Atmospheric aerosols : life cycles and effects on air quality and climate / / edited by Claudio Tomasi, Sandro Fuzzi, and Alexander Kokhanovsky |
Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH, , 2017 |
Descrizione fisica | 1 online resource (847 pages) : illustrations |
Disciplina | 551.5113 |
Soggetto topico | Atmospheric aerosols |
ISBN |
3-527-33643-5
3-527-33641-9 3-527-33644-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910162992303321 |
Weinheim, Germany : , : Wiley-VCH, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Atmospheric aerosols : life cycles and effects on air quality and climate / / edited by Claudio Tomasi, Sandro Fuzzi, and Alexander Kokhanovsky |
Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH, , 2017 |
Descrizione fisica | 1 online resource (847 pages) : illustrations |
Disciplina | 551.5113 |
Soggetto topico | Atmospheric aerosols |
ISBN |
3-527-33643-5
3-527-33641-9 3-527-33644-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910677297103321 |
Weinheim, Germany : , : Wiley-VCH, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Light polarization and multiple scattering in turbid media / / Alexander Kokhanovsky, editor |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer Nature Switzerland AG, , [2022] |
Descrizione fisica | 1 online resource (201 pages) |
Disciplina | 535.43 |
Collana | Springer Series in Light Scattering |
Soggetto topico |
Light - Scattering
Light - Transmission |
ISBN |
9783031102981
9783031102974 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Contents -- Multiple-Path Model of Reflection and Transmission for a Turbid Slab -- 1 Introduction -- 2 Probability Flux, Reflection, and Transmission -- 2.1 Path Length Probability Density -- 2.2 Boundary Conditions -- 3 Reflection and Transmission-No Internal Reflection -- 3.1 Reflection -- 3.2 Transmission -- 3.3 Summary-No Internal Reflection -- 4 Experiment-Dyed Fabric -- 5 Diffusion of Light in Paper -- 6 Reflection and Transmission-Internal Reflection -- 6.1 Boundary Conditions -- 6.2 Evaluation of Integral -- 6.3 Reflection and Transmission -- 6.4 Reflection -- 6.5 Transmission -- 6.6 Normalization -- 6.7 Plots of Reflectance and Transmittance-Internal Reflection -- 7 Conclusion -- References -- Laboratory Measurements of Multi-spectral, Polarization, and Angular Characteristics of Light Reflected from Particulate Samples -- 1 Introduction -- 2 Basic Definitions and Design Tradeoffs -- 2.1 Reflectance Configuration and Nomenclature -- 2.2 Instrument Design Tradeoffs -- 3 The Three-Colour Goniometer -- 3.1 Construction Motivations -- 3.2 System Descriptions -- 3.3 System Characterizations -- 3.4 Typical Measurement Results -- 4 The Bi-directional Reflectance Imaging System -- 4.1 Construction Motivations -- 4.2 Overall Description -- 4.3 Calibration and Characterizations -- 4.4 Example Measurements -- 5 The Bi-directional Reflectance Spectrometer -- 5.1 Construction Motivations -- 5.2 System Descriptions -- 5.3 Characterizations and Calibrations -- 5.4 Typical Measurement Results -- 6 Summary -- References -- Spectropolarimetry of Snow and Ice Surfaces: Measurements and Radiative Transfer Calculation -- 1 Introduction -- 2 Definition of Radiant Quantities Concerning the Polarization State of Light -- 3 Spectral Measurements and Instrumentation Device.
4 Spectral Polarization Properties of Light Reflected from Snow and Ice Surfaces -- 4.1 Spectral Dependence on the DoLP, upper P Subscript qPq, upper P Subscript uPu and HDRF -- 4.2 Snow Grain Size Dependence on the DoLP -- 4.3 High DoLP for the Melt-Freeze Crust -- 4.4 Viewing Angle Dependence on the DoLP -- 4.5 Viewing and Azimuth Angle Dependence on the DoLP and Related Parameters upper P Subscript qPq and upper P Subscript uPu -- 4.6 Atmosphere Effects on the Polarization Properties of Snow Surface by Use of the Radiative Transfer Model -- 4.7 Possibility of the Use of Polarization Information for the Remote Sensing -- 5 Conclusion and Closing Remarks -- References -- Light Scattering by Large Densely Packed Clusters of Particles -- 1 Introduction -- 2 Model Description -- 2.1 DGTD Method -- 2.2 Parallel Light Scattering Code -- 2.3 Generation of Dense Clusters of Irregular Particles -- 3 Results -- 3.1 Non-absorbing Clusters -- 3.2 Absorbing Layers -- 4 Conclusion -- References -- Light Backscattering by Atmospheric Particles: From Laboratory to Field Experiments -- 1 Introduction -- 1.1 On the Complexity of Atmospheric Particles -- 1.2 On the Importance of Light Backscattering by Atmospheric Particles -- 1.3 Theoretical Considerations -- 1.4 State of the Art on LightBackscattering -- 1.5 Outline of this Book Chapter -- 2 Light Scattering at Near Backscattering Angles ( θ< -- π) -- 2.1 The Laboratory π+ε Polarimeter -- 2.2 Scattering Matrix Elements Retrieval at Near Backscattering ( θ< -- π) -- 2.3 Light Scattering by Mineral Dust at Near Backscattering Angles ( θ< -- π) -- 2.4 Comparison with T-matrix Numerical Simulations -- 3 Light Backscattering at Exact Backscattering Angle (θ=π) -- 3.1 The Laboratory π-polarimeter (θ=π) -- 3.2 Scattering Matrix Elements and Lidar PDR Retrieval at Backscattering (θ=π). 3.3 Light Backscattering by Spherical Sulfates in Laboratory -- 3.4 Light Backscattering by Core-Shell Organic Sulfates in Laboratory -- 3.5 Light Backscattering by Soot Particles in Laboratory -- 3.6 Light Backscattering by Mineral Dust in Laboratory -- 4 Light Backscattering in the Atmosphere: Lidar Field Experiments -- 4.1 Atmospheric Lidar Implications -- 4.2 Field Version of the Laboratory π-polarimeter -- 4.3 Application Case Study: Time-Altitude Maps of Dust Particles Backscattering Revealing the Underlying Complex Physical-Chemistry -- 5 Conclusion and Outlooks -- References -- Index. |
Record Nr. | UNINA-9910595044303321 |
Cham, Switzerland : , : Springer Nature Switzerland AG, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Light polarization and multiple scattering in turbid media / / Alexander Kokhanovsky, editor |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer Nature Switzerland AG, , [2022] |
Descrizione fisica | 1 online resource (201 pages) |
Disciplina | 535.43 |
Collana | Springer Series in Light Scattering |
Soggetto topico |
Light - Scattering
Light - Transmission |
ISBN |
9783031102981
9783031102974 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Contents -- Multiple-Path Model of Reflection and Transmission for a Turbid Slab -- 1 Introduction -- 2 Probability Flux, Reflection, and Transmission -- 2.1 Path Length Probability Density -- 2.2 Boundary Conditions -- 3 Reflection and Transmission-No Internal Reflection -- 3.1 Reflection -- 3.2 Transmission -- 3.3 Summary-No Internal Reflection -- 4 Experiment-Dyed Fabric -- 5 Diffusion of Light in Paper -- 6 Reflection and Transmission-Internal Reflection -- 6.1 Boundary Conditions -- 6.2 Evaluation of Integral -- 6.3 Reflection and Transmission -- 6.4 Reflection -- 6.5 Transmission -- 6.6 Normalization -- 6.7 Plots of Reflectance and Transmittance-Internal Reflection -- 7 Conclusion -- References -- Laboratory Measurements of Multi-spectral, Polarization, and Angular Characteristics of Light Reflected from Particulate Samples -- 1 Introduction -- 2 Basic Definitions and Design Tradeoffs -- 2.1 Reflectance Configuration and Nomenclature -- 2.2 Instrument Design Tradeoffs -- 3 The Three-Colour Goniometer -- 3.1 Construction Motivations -- 3.2 System Descriptions -- 3.3 System Characterizations -- 3.4 Typical Measurement Results -- 4 The Bi-directional Reflectance Imaging System -- 4.1 Construction Motivations -- 4.2 Overall Description -- 4.3 Calibration and Characterizations -- 4.4 Example Measurements -- 5 The Bi-directional Reflectance Spectrometer -- 5.1 Construction Motivations -- 5.2 System Descriptions -- 5.3 Characterizations and Calibrations -- 5.4 Typical Measurement Results -- 6 Summary -- References -- Spectropolarimetry of Snow and Ice Surfaces: Measurements and Radiative Transfer Calculation -- 1 Introduction -- 2 Definition of Radiant Quantities Concerning the Polarization State of Light -- 3 Spectral Measurements and Instrumentation Device.
4 Spectral Polarization Properties of Light Reflected from Snow and Ice Surfaces -- 4.1 Spectral Dependence on the DoLP, upper P Subscript qPq, upper P Subscript uPu and HDRF -- 4.2 Snow Grain Size Dependence on the DoLP -- 4.3 High DoLP for the Melt-Freeze Crust -- 4.4 Viewing Angle Dependence on the DoLP -- 4.5 Viewing and Azimuth Angle Dependence on the DoLP and Related Parameters upper P Subscript qPq and upper P Subscript uPu -- 4.6 Atmosphere Effects on the Polarization Properties of Snow Surface by Use of the Radiative Transfer Model -- 4.7 Possibility of the Use of Polarization Information for the Remote Sensing -- 5 Conclusion and Closing Remarks -- References -- Light Scattering by Large Densely Packed Clusters of Particles -- 1 Introduction -- 2 Model Description -- 2.1 DGTD Method -- 2.2 Parallel Light Scattering Code -- 2.3 Generation of Dense Clusters of Irregular Particles -- 3 Results -- 3.1 Non-absorbing Clusters -- 3.2 Absorbing Layers -- 4 Conclusion -- References -- Light Backscattering by Atmospheric Particles: From Laboratory to Field Experiments -- 1 Introduction -- 1.1 On the Complexity of Atmospheric Particles -- 1.2 On the Importance of Light Backscattering by Atmospheric Particles -- 1.3 Theoretical Considerations -- 1.4 State of the Art on LightBackscattering -- 1.5 Outline of this Book Chapter -- 2 Light Scattering at Near Backscattering Angles ( θ< -- π) -- 2.1 The Laboratory π+ε Polarimeter -- 2.2 Scattering Matrix Elements Retrieval at Near Backscattering ( θ< -- π) -- 2.3 Light Scattering by Mineral Dust at Near Backscattering Angles ( θ< -- π) -- 2.4 Comparison with T-matrix Numerical Simulations -- 3 Light Backscattering at Exact Backscattering Angle (θ=π) -- 3.1 The Laboratory π-polarimeter (θ=π) -- 3.2 Scattering Matrix Elements and Lidar PDR Retrieval at Backscattering (θ=π). 3.3 Light Backscattering by Spherical Sulfates in Laboratory -- 3.4 Light Backscattering by Core-Shell Organic Sulfates in Laboratory -- 3.5 Light Backscattering by Soot Particles in Laboratory -- 3.6 Light Backscattering by Mineral Dust in Laboratory -- 4 Light Backscattering in the Atmosphere: Lidar Field Experiments -- 4.1 Atmospheric Lidar Implications -- 4.2 Field Version of the Laboratory π-polarimeter -- 4.3 Application Case Study: Time-Altitude Maps of Dust Particles Backscattering Revealing the Underlying Complex Physical-Chemistry -- 5 Conclusion and Outlooks -- References -- Index. |
Record Nr. | UNISA-996490352003316 |
Cham, Switzerland : , : Springer Nature Switzerland AG, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Light Scattering Reviews, Volume 11 : Light Scattering and Radiative Transfer / / edited by Alexander Kokhanovsky |
Edizione | [1st ed. 2016.] |
Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2016 |
Descrizione fisica | 1 online resource (XXI, 509 p. 188 illus., 109 illus. in color.) |
Disciplina | 551.5 |
Collana | Springer Praxis Books |
Soggetto topico |
Atmospheric sciences
Optics Electrodynamics Planetology Remote sensing Atmospheric Sciences Classical Electrodynamics Remote Sensing/Photogrammetry |
ISBN | 3-662-49538-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | The Discrete-ordinate Algorithm, DISORT for Radiative Transfer -- Community Radiative Transfer Model for Air Quality Studies -- Radiative Transfer in Spherically and Cylindrically Symmetric Media -- The Debye Series and its Use in Time-domain Scattering -- Some Wave-theoretic Problems in Radially Inhomogeneous Media -- Polarimetry of Man-made Objects. . |
Record Nr. | UNINA-9910254115203321 |
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Physics and Chemistry of the Arctic Atmosphere / / edited by Alexander Kokhanovsky, Claudio Tomasi |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (XIV, 717 p. 215 illus., 139 illus. in color.) |
Disciplina | 551.5 |
Collana | Springer Polar Sciences |
Soggetto topico |
Atmospheric sciences
Environmental sciences Climate change Meteorology Thermodynamics Atmospheric Sciences Environmental Physics Climate Change/Climate Change Impacts |
ISBN | 3-030-33566-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1. Dynamical Processes in Arctic atmosphere ( Marius O. Jonassen, Dmitry Chechin, Alexey Karpechko, Christof Lüpkes, Thomas Spengler, Annick Tepstra, Timo Vihma, and Xiangdong Zhang) -- Chapter 2. Thermodynamics of Arctic atmosphere (Claudio Tomasi, Boyan H. Petkov, Oxana Drofa, and Mauro Mazzola) -- Chapter 3. Trace gases in Arctic atmosphere (Kimberly Strong, William R. Simpson, Kristof Bognar, Rodica Lindenmaier, and Sébastien Roche) -- Chapter 4. Arctic aerosol (Roberto Udisti, Rita Traversi, Silvia Becagli, Claudio Tomasi, Mauro Mazzola, Angelo Lupi, and Patricia K. Quinn) -- Chapter 5. Arctic clouds (Abhay Devasthale, Joseph Sedlar, Michael Tjernström and Alexander Kokhanovsky) -- Chapter 6. Arctic fog (Ismail Gultepe, Andrew J. Heymsfield, Martin Gallagher) -- Chapter 7. Polar stratospheric clouds (Francesco Cairo, and Tiziana Colavitto) -- Chapter 8. Noctilucent clouds (Christian von Savigny, Gerd Baumgarten, and Franz-Josef Lubken) -- Chapter 9. Remote sensing of Arctic atmosphere (Alexander Kokhanovsky, Claudio Tomasi, Alexander Smirnov, Andreas Herber, Roland Neuber, André Ehrlich, Angelo Lupi, Boyan H. Petkov, Mauro Mazzola, Christoph Ritter, Carlos Toledano, Thomas Carlund, Vito Vitale, Brent Holben, Tymon Zielinski, Simon Bélanger, Pierre Larouche, Stefan Kinne, Vladimir Radionov, Manfred Wendish, Jason L. Tackett and Dave M. Winker) -- Chapter 10. Radiation in Arctic atmosphere and atmosphere-cryosphere feedbacks (Claudio Tomasi, Boyan H. Petkov, Angelo Lupi, and Mauro Mazzola and Christian Lanconelli, and I. Gultepe) -- Chapter 11. Climate change in Arctic (T. Koenigk, J. Key, and T. Vihma). |
Record Nr. | UNINA-9910373880903321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Springer series in light scattering . Volume 6 Radiative transfer, light scattering, and remote sensing / / edited by Alexander Kokhanovsky |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (201 pages) |
Disciplina | 621.366 |
Collana | Springer Series in Light Scattering |
Soggetto topico |
Lasers
Photonics Adaptation (Biology) Ecology Euthenics Nature and nurture |
ISBN | 3-030-71254-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996466728903316 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Springer series in light scattering . Volume 6 Radiative transfer, light scattering, and remote sensing / / edited by Alexander Kokhanovsky |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (201 pages) |
Disciplina | 621.366 |
Collana | Springer Series in Light Scattering |
Soggetto topico |
Lasers
Photonics Adaptation (Biology) Ecology Euthenics Nature and nurture |
ISBN | 3-030-71254-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910484603303321 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Springer series in light scattering . Volume 7 Light absorption and scattering in turbid media / / Alexander Kokhanovsky, editor |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (165 pages) |
Disciplina | 523.113 |
Collana | Springer series in light scattering |
Soggetto topico | Light absorption |
ISBN | 3-030-87683-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Contents -- Light-Absorbing Particles in Snow and Ice: A Brief Journey Across Latitudes -- 1 Introduction -- 2 A Journey Across Latitudes -- 2.1 Middle Latitudes -- 2.2 Tropical Areas -- 2.3 Polar Regions -- 3 Optical Properties of LAPs on Snow and Ice -- 3.1 Non-carbonaceous Particles -- 3.2 Carbonaceous Particles -- 3.3 Biogenic Particles -- 3.4 Cryoconite -- 4 Proximal and Remote Sensing of LAPs -- 4.1 Field Spectroscopy -- 4.2 Airborne Sensor Data -- 4.3 Satellite Data -- 5 Conclusion and Future Perspectives -- References -- Machine Learning Based Retrieval Algorithms: Application to Ocean Optics -- 1 Introduction -- 2 Physical Model -- 3 Machine Learning Model -- 4 Important Aspects of ML -- 4.1 Data -- 4.2 Quality of Fit -- 4.3 Multilayer Perceptron (MLP) -- 4.4 Hyperparameters -- 4.5 Activation Functions -- 4.6 Optimization Methods -- 5 ML Based Ocean Optics Retrieval Algorithms -- 5.1 Conclusion -- References -- Radiative Properties of Non-spherical Black Carbon Aerosols -- 1 Introduction -- 2 The Morphological Characteristics of BC -- 2.1 Bare BC -- 2.2 Coated BC -- 3 Modeling of the Radiative Properties of Non-spherical BC -- 3.1 Light Scattering Methods -- 3.2 Models -- 3.3 Radiative Properties of Non-spherical BC -- 4 The Optical Measurements Constrained by BC Morphologies -- 4.1 The Retrieval of BC Size Distribution -- 4.2 The Retrieval of BC Refractive Index -- 4.3 The Retrieval of BrC Absorption -- 5 Paramerization of Radiative Properties of BC with Non-spherical Morphologies -- 6 Coupling Non-spherical BC Radiative Model with the Chemical Transport Model -- 7 Summary and Future Remarks -- References -- Scattering of Shaped Beams by Large Particles: Theoretical Interpretation and Numerical Techniques -- 1 Introduction -- 2 Theoretical Framework of Variable Separation Method.
3 Beam Shape Coefficients in Different Coordinate Systems -- 3.1 BSC in Spherical Coordinate System -- 3.2 BSC in Other Coordinate Systems -- 4 Scattering Coefficients -- 5 Calculation of Physical Quantities and Software ABSphere -- 6 Angular Spectrum Decomposition -- 6.1 Angular Spectrum Decomposition of a Shaped Beam -- 6.2 Homogeneous and Inhomogeneous Plane Waves -- 6.3 Shaped Beams with Simple Symmetry -- References -- Index. |
Record Nr. | UNINA-9910508484603321 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Springer series in light scattering . Volume 7 Light absorption and scattering in turbid media / / Alexander Kokhanovsky, editor |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (165 pages) |
Disciplina | 523.113 |
Collana | Springer series in light scattering |
Soggetto topico | Light absorption |
ISBN | 3-030-87683-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Contents -- Light-Absorbing Particles in Snow and Ice: A Brief Journey Across Latitudes -- 1 Introduction -- 2 A Journey Across Latitudes -- 2.1 Middle Latitudes -- 2.2 Tropical Areas -- 2.3 Polar Regions -- 3 Optical Properties of LAPs on Snow and Ice -- 3.1 Non-carbonaceous Particles -- 3.2 Carbonaceous Particles -- 3.3 Biogenic Particles -- 3.4 Cryoconite -- 4 Proximal and Remote Sensing of LAPs -- 4.1 Field Spectroscopy -- 4.2 Airborne Sensor Data -- 4.3 Satellite Data -- 5 Conclusion and Future Perspectives -- References -- Machine Learning Based Retrieval Algorithms: Application to Ocean Optics -- 1 Introduction -- 2 Physical Model -- 3 Machine Learning Model -- 4 Important Aspects of ML -- 4.1 Data -- 4.2 Quality of Fit -- 4.3 Multilayer Perceptron (MLP) -- 4.4 Hyperparameters -- 4.5 Activation Functions -- 4.6 Optimization Methods -- 5 ML Based Ocean Optics Retrieval Algorithms -- 5.1 Conclusion -- References -- Radiative Properties of Non-spherical Black Carbon Aerosols -- 1 Introduction -- 2 The Morphological Characteristics of BC -- 2.1 Bare BC -- 2.2 Coated BC -- 3 Modeling of the Radiative Properties of Non-spherical BC -- 3.1 Light Scattering Methods -- 3.2 Models -- 3.3 Radiative Properties of Non-spherical BC -- 4 The Optical Measurements Constrained by BC Morphologies -- 4.1 The Retrieval of BC Size Distribution -- 4.2 The Retrieval of BC Refractive Index -- 4.3 The Retrieval of BrC Absorption -- 5 Paramerization of Radiative Properties of BC with Non-spherical Morphologies -- 6 Coupling Non-spherical BC Radiative Model with the Chemical Transport Model -- 7 Summary and Future Remarks -- References -- Scattering of Shaped Beams by Large Particles: Theoretical Interpretation and Numerical Techniques -- 1 Introduction -- 2 Theoretical Framework of Variable Separation Method.
3 Beam Shape Coefficients in Different Coordinate Systems -- 3.1 BSC in Spherical Coordinate System -- 3.2 BSC in Other Coordinate Systems -- 4 Scattering Coefficients -- 5 Calculation of Physical Quantities and Software ABSphere -- 6 Angular Spectrum Decomposition -- 6.1 Angular Spectrum Decomposition of a Shaped Beam -- 6.2 Homogeneous and Inhomogeneous Plane Waves -- 6.3 Shaped Beams with Simple Symmetry -- References -- Index. |
Record Nr. | UNISA-996466850103316 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|