Chromatic polynomials and chromaticity of graphs [[electronic resource] /] / F.M. Dong, K.M. Koh and K.L. Teo |
Autore | Dong F. M. <1962-> |
Pubbl/distr/stampa | New Jersey ; ; Hong Kong, : World Scientific Pub., 2005 |
Descrizione fisica | 1 online resource (386 p.) |
Disciplina | 511/.56 |
Altri autori (Persone) |
KohK. M <1944-> (Khee Meng)
TeoK. L |
Soggetto topico |
Graph coloring
Graph theory Polynomials |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-88109-0
9786611881092 981-256-946-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; Basic Concepts in Graph Theory; Notation; Chapter 1 The Number of -Colourings and Its Enumerations; Chapter 2 Chromatic Polynomials; Chapter 3 Chromatic Equivalence of Graphs; Chapter 4 Chromaticity of Multi-Partite Graphs; Chapter 5 Chromaticity of Subdivisions of Graphs; Chapter 6 Graphs in Which any Two Colour Classes Induce a Tree (I); Chapter 7 Graphs in Which any Two Colour Classes Induce a Tree (II); Chapter 8 Graphs in Which All but One Pair of Colour Classes Induce Trees (I); Chapter 9 Graphs in Which All but One Pair of Colour Classes Induce Trees (II)
Chapter 10 Chromaticity of Extremal 3-Colourable GraphsChapter 11 Polynomials Related to Chromatic Polynomials; Chapter 12 Real Roots of Chromatic Polynomials; Chapter 13 Integral Roots of Chromatic Polynomials; Chapter 14 Complex Roots of Chromatic Polynomials; Chapter 15 Inequalities on Chromatic Polynomials; Bibliography; Index |
Record Nr. | UNINA-9910450446303321 |
Dong F. M. <1962-> | ||
New Jersey ; ; Hong Kong, : World Scientific Pub., 2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Chromatic polynomials and chromaticity of graphs [[electronic resource] /] / F.M. Dong, K.M. Koh and K.L. Teo |
Autore | Dong F. M. <1962-> |
Pubbl/distr/stampa | New Jersey ; ; Hong Kong, : World Scientific Pub., 2005 |
Descrizione fisica | 1 online resource (386 p.) |
Disciplina | 511/.56 |
Altri autori (Persone) |
KohK. M <1944-> (Khee Meng)
TeoK. L |
Soggetto topico |
Graph coloring
Graph theory Polynomials |
ISBN |
1-281-88109-0
9786611881092 981-256-946-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; Basic Concepts in Graph Theory; Notation; Chapter 1 The Number of -Colourings and Its Enumerations; Chapter 2 Chromatic Polynomials; Chapter 3 Chromatic Equivalence of Graphs; Chapter 4 Chromaticity of Multi-Partite Graphs; Chapter 5 Chromaticity of Subdivisions of Graphs; Chapter 6 Graphs in Which any Two Colour Classes Induce a Tree (I); Chapter 7 Graphs in Which any Two Colour Classes Induce a Tree (II); Chapter 8 Graphs in Which All but One Pair of Colour Classes Induce Trees (I); Chapter 9 Graphs in Which All but One Pair of Colour Classes Induce Trees (II)
Chapter 10 Chromaticity of Extremal 3-Colourable GraphsChapter 11 Polynomials Related to Chromatic Polynomials; Chapter 12 Real Roots of Chromatic Polynomials; Chapter 13 Integral Roots of Chromatic Polynomials; Chapter 14 Complex Roots of Chromatic Polynomials; Chapter 15 Inequalities on Chromatic Polynomials; Bibliography; Index |
Record Nr. | UNINA-9910783724303321 |
Dong F. M. <1962-> | ||
New Jersey ; ; Hong Kong, : World Scientific Pub., 2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Chromatic polynomials and chromaticity of graphs / / F.M. Dong, K.M. Koh and K.L. Teo |
Autore | Dong F. M. <1962-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | New Jersey ; ; Hong Kong, : World Scientific Pub., 2005 |
Descrizione fisica | 1 online resource (386 p.) |
Disciplina | 511/.56 |
Altri autori (Persone) |
KohK. M <1944-> (Khee Meng)
TeoK. L |
Soggetto topico |
Graph coloring
Graph theory Polynomials |
ISBN |
1-281-88109-0
9786611881092 981-256-946-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; Basic Concepts in Graph Theory; Notation; Chapter 1 The Number of -Colourings and Its Enumerations; Chapter 2 Chromatic Polynomials; Chapter 3 Chromatic Equivalence of Graphs; Chapter 4 Chromaticity of Multi-Partite Graphs; Chapter 5 Chromaticity of Subdivisions of Graphs; Chapter 6 Graphs in Which any Two Colour Classes Induce a Tree (I); Chapter 7 Graphs in Which any Two Colour Classes Induce a Tree (II); Chapter 8 Graphs in Which All but One Pair of Colour Classes Induce Trees (I); Chapter 9 Graphs in Which All but One Pair of Colour Classes Induce Trees (II)
Chapter 10 Chromaticity of Extremal 3-Colourable GraphsChapter 11 Polynomials Related to Chromatic Polynomials; Chapter 12 Real Roots of Chromatic Polynomials; Chapter 13 Integral Roots of Chromatic Polynomials; Chapter 14 Complex Roots of Chromatic Polynomials; Chapter 15 Inequalities on Chromatic Polynomials; Bibliography; Index |
Record Nr. | UNINA-9910819961103321 |
Dong F. M. <1962-> | ||
New Jersey ; ; Hong Kong, : World Scientific Pub., 2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|