Machine Learning for Medical Image Reconstruction [[electronic resource] ] : Second International Workshop, MLMIR 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings / / edited by Florian Knoll, Andreas Maier, Daniel Rueckert, Jong Chul Ye |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (ix, 266 pages) |
Disciplina | 610.28563 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Artificial intelligence
Education—Data processing Application software Bioinformatics Optical data processing Health informatics Artificial Intelligence Computers and Education Computer Appl. in Social and Behavioral Sciences Computational Biology/Bioinformatics Image Processing and Computer Vision Health Informatics |
ISBN | 3-030-33843-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Deep Learning for Magnetic Resonance Imaging -- Recon-GLGAN: A Global-Local context based Generative Adversarial Network for MRI Reconstruction- Self-supervised Recurrent Neural Network for 4D Abdominal and In-utero MR Imaging -- Fast Dynamic Perfusion and Angiography Reconstruction using an end-to-end 3D Convolutional Neural Network -- APIR-Net: Autocalibrated Parallel Imaging Reconstruction using a Neural Network -- Accelerated MRI Reconstruction with Dual-domain Generative Adversarial Network -- Deep Learning for Low-Field to High-Field MR: Image Quality Transfer with Probabilistic Decimation Simulator -- Joint Multi-Anatomy Training of a Variational Network for Reconstruction of Accelerated Magnetic Resonance Image Acquisitions -- Modeling and Analysis Brain Development via Discriminative Dictionary Learning -- Deep Learning for Computed Tomography -- Virtual Thin Slice: 3D Conditional GAN-based Super-resolution for CT Slice Interval -- Data Consistent Artifact Reduction for Limited Angle Tomography with Deep Learning Prior -- Measuring CT Reconstruction Quality with Deep Convolutional Neural Networks -- Deep Learning based Metal Inpainting in the Projection Domain: Initial Results -- Deep Learning for General Image Reconstruction -- Flexible Conditional Image Generation of Missing Data with Learned Mental Maps -- Spatiotemporal PET reconstruction using ML-EM with learned diffeomorphic deformation -- Stain Style Transfer using Transitive Adversarial Networks -- Blind Deconvolution Microscopy Using Cycle Consistent CNN with Explicit PSF Layer -- Deep Learning based approach to quantification of PET tracer uptake in small tumors -- Task-GAN: Improving Generative Adversarial Network for Image Reconstruction -- Gamma Source Location Learning from Synthetic Multi-Pinhole Collimator Data -- Neural Denoising of Ultra-Low Dose Mammography -- Image Reconstruction in a Manifold of Image Patches: Application to Whole-fetus Ultrasound Imaging -- Image Super Resolution via Bilinear Pooling: Application to Confocal Endomicroscopy -- TPSDicyc: Improved Deformation Invariant Cross-domain Medical Image Synthesis -- PredictUS: A Method to Extend the Resolution-Precision Trade-off in Quantitative Ultrasound Image Reconstruction. |
Record Nr. | UNISA-996466288703316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Machine Learning for Medical Image Reconstruction : Second International Workshop, MLMIR 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019, Proceedings / / edited by Florian Knoll, Andreas Maier, Daniel Rueckert, Jong Chul Ye |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (ix, 266 pages) |
Disciplina |
610.28563
006.31 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Artificial intelligence
Education—Data processing Application software Bioinformatics Optical data processing Health informatics Artificial Intelligence Computers and Education Computer Appl. in Social and Behavioral Sciences Computational Biology/Bioinformatics Image Processing and Computer Vision Health Informatics |
ISBN | 3-030-33843-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Deep Learning for Magnetic Resonance Imaging -- Recon-GLGAN: A Global-Local context based Generative Adversarial Network for MRI Reconstruction- Self-supervised Recurrent Neural Network for 4D Abdominal and In-utero MR Imaging -- Fast Dynamic Perfusion and Angiography Reconstruction using an end-to-end 3D Convolutional Neural Network -- APIR-Net: Autocalibrated Parallel Imaging Reconstruction using a Neural Network -- Accelerated MRI Reconstruction with Dual-domain Generative Adversarial Network -- Deep Learning for Low-Field to High-Field MR: Image Quality Transfer with Probabilistic Decimation Simulator -- Joint Multi-Anatomy Training of a Variational Network for Reconstruction of Accelerated Magnetic Resonance Image Acquisitions -- Modeling and Analysis Brain Development via Discriminative Dictionary Learning -- Deep Learning for Computed Tomography -- Virtual Thin Slice: 3D Conditional GAN-based Super-resolution for CT Slice Interval -- Data Consistent Artifact Reduction for Limited Angle Tomography with Deep Learning Prior -- Measuring CT Reconstruction Quality with Deep Convolutional Neural Networks -- Deep Learning based Metal Inpainting in the Projection Domain: Initial Results -- Deep Learning for General Image Reconstruction -- Flexible Conditional Image Generation of Missing Data with Learned Mental Maps -- Spatiotemporal PET reconstruction using ML-EM with learned diffeomorphic deformation -- Stain Style Transfer using Transitive Adversarial Networks -- Blind Deconvolution Microscopy Using Cycle Consistent CNN with Explicit PSF Layer -- Deep Learning based approach to quantification of PET tracer uptake in small tumors -- Task-GAN: Improving Generative Adversarial Network for Image Reconstruction -- Gamma Source Location Learning from Synthetic Multi-Pinhole Collimator Data -- Neural Denoising of Ultra-Low Dose Mammography -- Image Reconstruction in a Manifold of Image Patches: Application to Whole-fetus Ultrasound Imaging -- Image Super Resolution via Bilinear Pooling: Application to Confocal Endomicroscopy -- TPSDicyc: Improved Deformation Invariant Cross-domain Medical Image Synthesis -- PredictUS: A Method to Extend the Resolution-Precision Trade-off in Quantitative Ultrasound Image Reconstruction. |
Record Nr. | UNINA-9910349269003321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Machine Learning for Medical Image Reconstruction [[electronic resource] ] : First International Workshop, MLMIR 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings / / edited by Florian Knoll, Andreas Maier, Daniel Rueckert |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (X, 158 p. 67 illus.) |
Disciplina | 616.07540285 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Artificial intelligence
Optical data processing Computer communication systems Logic design Health informatics Artificial Intelligence Image Processing and Computer Vision Computer Communication Networks Logic Design Health Informatics |
ISBN | 3-030-00129-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Deep learning for magnetic resonance imaging -- Deep learning for computed tomography -- Deep learning for general image reconstruction. |
Record Nr. | UNISA-996466192303316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Machine Learning for Medical Image Reconstruction : First International Workshop, MLMIR 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings / / edited by Florian Knoll, Andreas Maier, Daniel Rueckert |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (X, 158 p. 67 illus.) |
Disciplina |
616.07540285
006.31 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Artificial intelligence
Optical data processing Computer communication systems Logic design Health informatics Artificial Intelligence Image Processing and Computer Vision Computer Communication Networks Logic Design Health Informatics |
ISBN | 3-030-00129-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Deep learning for magnetic resonance imaging -- Deep learning for computed tomography -- Deep learning for general image reconstruction. |
Record Nr. | UNINA-9910349407103321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|