top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Forecasting volatility in the financial markets [[electronic resource] /] / edited by John Knight, Stephen Satchell
Forecasting volatility in the financial markets [[electronic resource] /] / edited by John Knight, Stephen Satchell
Edizione [3rd ed.]
Pubbl/distr/stampa Amsterdam ; ; Boston, : Butterworth-Heinemann, 2007
Descrizione fisica 1 online resource (428 p.)
Disciplina 332.66/2042
Altri autori (Persone) KnightJohn L
SatchellS (Stephen)
Collana Quantitative finance series
Soggetto topico Options (Finance) - Mathematical models
Securities - Prices - Mathematical models
Stock price forecasting - Mathematical models
Soggetto genere / forma Electronic books.
ISBN 1-280-96289-5
9786610962891
0-08-047142-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Forecasting Volatility in the Financial Markets; Copyright Page; Table of Contents; List of contributors; Preface to Third Edition; Introduction; Chapter 1 Volatility modelling and forecasting in finance; 1.1 Introduction; 1.2 Autoregressive moving average models; 1.3 Changes in volatility; 1.3.1 Volatility in financial time series: stylized facts; 1.3.2 The basic set-up; 1.4 ARCH models; 1.4.1 Generalized ARCH; 1.4.2 Integrated ARCH; 1.4.3 Exponential ARCH; 1.4.4 ARCH-M model; 1.4.5 Fractionally integrated ARCH; 1.4.6 Other univariate ARCH formulations
1.4.7 Multivariate ARCH models1.5 Stochastic variance models; 1.5.1 From continuous time financial models to discrete time SV models; 1.5.2 Persistence and the SV model; 1.5.3 Long memory SV models; 1.5.4 Risk-return trade-off in SV models; 1.5.5 Multivariate SV models; 1.6 Structural changes in the underlying process; 1.6.1 Regime switching models; 1.6.2 Extensions of the regime switching models; 1.7 Threshold models; 1.7.1 Self-exciting threshold models; 1.7.2 Open loop threshold models; 1.7.3 Closed loop threshold models; 1.7.4 Smooth threshold autoregressive models
1.7.5 Identification in SETAR models1.7.6 A threshold AR(1) model; 1.7.7 A threshold MA model; 1.7.8 Threshold models and asymmetries in volatility; 1.7.9 Testing for non-linearity; 1.7.10 Threshold estimation and prediction of TAR models; 1.8 Volatility forecasting; 1.8.1 Volatility forecasting based on time-series models; 1.8.2 Volatility forecasting based on option ISD (Implied Standard Deviation); 1.9 Conclusion; References and further reading; Notes; Chapter 2 What good is a volatility model?; Abstract; 2.1 Introduction; 2.1.1 Notation; 2.1.2 Types of volatility models
2.2 Stylized facts about asset price volatility2.2.1 Volatility exhibits persistence; 2.2.2 Volatility is mean reverting; 2.2.3 Innovations may have an asymmetric impact on volatility; 2.2.4 Exogenous variables may influence volatility; 2.2.5 Tail probabilities; 2.2.6 Forecast evaluation; 2.3 An empirical example; 2.3.1 Summary of the data; 2.3.2 A volatility model; 2.3.3 Mean reversion and persistence in volatility; 2.3.4 An asymmetric volatility model; 2.3.5 A model with exogenous volatility regressors; 2.3.6 Aggregation of volatility models
2.4 Conclusions and challenges for future researchReferences; Notes; Chapter 3 Applications of portfolio variety; Abstract; 3.1 Introduction; 3.2 Some applications of variety; 3.3 Empirical research on variety; 3.4 Variety and risk estimation; 3.5 Variety as an explanation of active management styles; 3.6 Summary; References; Chapter 4 A comparison of the properties of realized variance for the FTSE 100 and FTSE 250 equity indices; 4.1 Introduction; 4.2 Data; 4.3 Theory and empirical methodology; 4.3.1 Realized variance; 4.3.2 Optimal sampling frequency; 4.3.3 Estimation; 4.3.4 Forecasting
4.4 Initial data analysis
Record Nr. UNINA-9910457681603321
Amsterdam ; ; Boston, : Butterworth-Heinemann, 2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Forecasting volatility in the financial markets [[electronic resource] /] / edited by John Knight, Stephen Satchell
Forecasting volatility in the financial markets [[electronic resource] /] / edited by John Knight, Stephen Satchell
Edizione [3rd ed.]
Pubbl/distr/stampa Amsterdam ; ; Boston, : Butterworth-Heinemann, 2007
Descrizione fisica 1 online resource (428 p.)
Disciplina 332.66/2042
Altri autori (Persone) KnightJohn L
SatchellStephen <1949->
Collana Quantitative finance series
Soggetto topico Options (Finance) - Mathematical models
Securities - Prices - Mathematical models
Stock price forecasting - Mathematical models
ISBN 1-280-96289-5
9786610962891
0-08-047142-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Forecasting Volatility in the Financial Markets; Copyright Page; Table of Contents; List of contributors; Preface to Third Edition; Introduction; Chapter 1 Volatility modelling and forecasting in finance; 1.1 Introduction; 1.2 Autoregressive moving average models; 1.3 Changes in volatility; 1.3.1 Volatility in financial time series: stylized facts; 1.3.2 The basic set-up; 1.4 ARCH models; 1.4.1 Generalized ARCH; 1.4.2 Integrated ARCH; 1.4.3 Exponential ARCH; 1.4.4 ARCH-M model; 1.4.5 Fractionally integrated ARCH; 1.4.6 Other univariate ARCH formulations
1.4.7 Multivariate ARCH models1.5 Stochastic variance models; 1.5.1 From continuous time financial models to discrete time SV models; 1.5.2 Persistence and the SV model; 1.5.3 Long memory SV models; 1.5.4 Risk-return trade-off in SV models; 1.5.5 Multivariate SV models; 1.6 Structural changes in the underlying process; 1.6.1 Regime switching models; 1.6.2 Extensions of the regime switching models; 1.7 Threshold models; 1.7.1 Self-exciting threshold models; 1.7.2 Open loop threshold models; 1.7.3 Closed loop threshold models; 1.7.4 Smooth threshold autoregressive models
1.7.5 Identification in SETAR models1.7.6 A threshold AR(1) model; 1.7.7 A threshold MA model; 1.7.8 Threshold models and asymmetries in volatility; 1.7.9 Testing for non-linearity; 1.7.10 Threshold estimation and prediction of TAR models; 1.8 Volatility forecasting; 1.8.1 Volatility forecasting based on time-series models; 1.8.2 Volatility forecasting based on option ISD (Implied Standard Deviation); 1.9 Conclusion; References and further reading; Notes; Chapter 2 What good is a volatility model?; Abstract; 2.1 Introduction; 2.1.1 Notation; 2.1.2 Types of volatility models
2.2 Stylized facts about asset price volatility2.2.1 Volatility exhibits persistence; 2.2.2 Volatility is mean reverting; 2.2.3 Innovations may have an asymmetric impact on volatility; 2.2.4 Exogenous variables may influence volatility; 2.2.5 Tail probabilities; 2.2.6 Forecast evaluation; 2.3 An empirical example; 2.3.1 Summary of the data; 2.3.2 A volatility model; 2.3.3 Mean reversion and persistence in volatility; 2.3.4 An asymmetric volatility model; 2.3.5 A model with exogenous volatility regressors; 2.3.6 Aggregation of volatility models
2.4 Conclusions and challenges for future researchReferences; Notes; Chapter 3 Applications of portfolio variety; Abstract; 3.1 Introduction; 3.2 Some applications of variety; 3.3 Empirical research on variety; 3.4 Variety and risk estimation; 3.5 Variety as an explanation of active management styles; 3.6 Summary; References; Chapter 4 A comparison of the properties of realized variance for the FTSE 100 and FTSE 250 equity indices; 4.1 Introduction; 4.2 Data; 4.3 Theory and empirical methodology; 4.3.1 Realized variance; 4.3.2 Optimal sampling frequency; 4.3.3 Estimation; 4.3.4 Forecasting
4.4 Initial data analysis
Record Nr. UNINA-9910784357303321
Amsterdam ; ; Boston, : Butterworth-Heinemann, 2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Forecasting volatility in the financial markets / / edited by John Knight, Stephen Satchell
Forecasting volatility in the financial markets / / edited by John Knight, Stephen Satchell
Edizione [3rd ed.]
Pubbl/distr/stampa Amsterdam ; ; Boston, : Butterworth-Heinemann, 2007
Descrizione fisica 1 online resource (428 p.)
Disciplina 332.66/2042
Altri autori (Persone) KnightJohn L
SatchellS (Stephen)
Collana Quantitative finance series
Soggetto topico Options (Finance) - Mathematical models
Securities - Prices - Mathematical models
Stock price forecasting - Mathematical models
ISBN 1-280-96289-5
9786610962891
0-08-047142-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Forecasting Volatility in the Financial Markets; Copyright Page; Table of Contents; List of contributors; Preface to Third Edition; Introduction; Chapter 1 Volatility modelling and forecasting in finance; 1.1 Introduction; 1.2 Autoregressive moving average models; 1.3 Changes in volatility; 1.3.1 Volatility in financial time series: stylized facts; 1.3.2 The basic set-up; 1.4 ARCH models; 1.4.1 Generalized ARCH; 1.4.2 Integrated ARCH; 1.4.3 Exponential ARCH; 1.4.4 ARCH-M model; 1.4.5 Fractionally integrated ARCH; 1.4.6 Other univariate ARCH formulations
1.4.7 Multivariate ARCH models1.5 Stochastic variance models; 1.5.1 From continuous time financial models to discrete time SV models; 1.5.2 Persistence and the SV model; 1.5.3 Long memory SV models; 1.5.4 Risk-return trade-off in SV models; 1.5.5 Multivariate SV models; 1.6 Structural changes in the underlying process; 1.6.1 Regime switching models; 1.6.2 Extensions of the regime switching models; 1.7 Threshold models; 1.7.1 Self-exciting threshold models; 1.7.2 Open loop threshold models; 1.7.3 Closed loop threshold models; 1.7.4 Smooth threshold autoregressive models
1.7.5 Identification in SETAR models1.7.6 A threshold AR(1) model; 1.7.7 A threshold MA model; 1.7.8 Threshold models and asymmetries in volatility; 1.7.9 Testing for non-linearity; 1.7.10 Threshold estimation and prediction of TAR models; 1.8 Volatility forecasting; 1.8.1 Volatility forecasting based on time-series models; 1.8.2 Volatility forecasting based on option ISD (Implied Standard Deviation); 1.9 Conclusion; References and further reading; Notes; Chapter 2 What good is a volatility model?; Abstract; 2.1 Introduction; 2.1.1 Notation; 2.1.2 Types of volatility models
2.2 Stylized facts about asset price volatility2.2.1 Volatility exhibits persistence; 2.2.2 Volatility is mean reverting; 2.2.3 Innovations may have an asymmetric impact on volatility; 2.2.4 Exogenous variables may influence volatility; 2.2.5 Tail probabilities; 2.2.6 Forecast evaluation; 2.3 An empirical example; 2.3.1 Summary of the data; 2.3.2 A volatility model; 2.3.3 Mean reversion and persistence in volatility; 2.3.4 An asymmetric volatility model; 2.3.5 A model with exogenous volatility regressors; 2.3.6 Aggregation of volatility models
2.4 Conclusions and challenges for future researchReferences; Notes; Chapter 3 Applications of portfolio variety; Abstract; 3.1 Introduction; 3.2 Some applications of variety; 3.3 Empirical research on variety; 3.4 Variety and risk estimation; 3.5 Variety as an explanation of active management styles; 3.6 Summary; References; Chapter 4 A comparison of the properties of realized variance for the FTSE 100 and FTSE 250 equity indices; 4.1 Introduction; 4.2 Data; 4.3 Theory and empirical methodology; 4.3.1 Realized variance; 4.3.2 Optimal sampling frequency; 4.3.3 Estimation; 4.3.4 Forecasting
4.4 Initial data analysis
Record Nr. UNINA-9910824456303321
Amsterdam ; ; Boston, : Butterworth-Heinemann, 2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Linear factor models in finance [[electronic resource] /] / [edited by] John Knight and Stephen Satchell
Linear factor models in finance [[electronic resource] /] / [edited by] John Knight and Stephen Satchell
Pubbl/distr/stampa Amsterdam ; ; Oxford, : Elsevier Butterworth-Heinemann, 2005
Descrizione fisica 1 online resource (298 p.)
Disciplina 332.015118
Altri autori (Persone) KnightJohn L
SatchellS (Stephen)
Collana Quantitative finance series
Soggetto topico Finance - Mathematical models
Mathematics
Soggetto genere / forma Electronic books.
ISBN 1-280-63881-8
9786610638819
0-08-045532-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Linear Factor Models in Finance; Contents; List of contributors; Introduction; 1 Review of literature on multifactor asset pricing models; 1.1 Theoretical reasons for existence of multiple factors; 1.2 Empirical evidence of existence of multiple factors; 1.3 Estimation of factor pricing models; Bibliography; 2 Estimating UK factor models using the multivariate skew normal distribution; 2.1 Introduction; 2.2 The multivariate skew normal distribution and some of its properties; 2.3 Conditional distributions and factor models; 2.4 Data model choice and estimation; 2.5 Empirical study
2.5.1 Basic return statistics2.5.2 Overall model fit; 2.5.3 Comparison of parameter estimates; 2.5.4 Skewness parameters; 2.5.5 Tau and time-varying conditional variance; 2.6 Conclusions; Acknowledgement; References; 3 Misspecification in the linear pricing model; 3.1 Introduction; 3.2 Framework; 3.2.1 Arbitrage Pricing Theory; 3.2.2 Multivariate F test used in linear factor model; 3.2.3 Average F test used in linear factor model; 3.3 Distribution of the multivariate F test statistics under misspecification; 3.3.1 Exclusion of a set of factors from estimation
3.3.2 Time-varying factor loadings3.4 Simulation study; 3.4.1 Design; 3.4.2 Factors serially independent; 3.4.3 Factors autocorrelated; 3.4.4 Time-varying factor loadings; 3.4.5 Simulation results; 3.5 Conclusion; Appendix: Proof of proposition 3.1 and proposition 3.2; 4 Bayesian estimation of risk premia in an APT context; 4.1 Introduction; 4.2 The general APT framework; 4.2.1 The excess return generating process (when factors are traded portfolios); 4.2.2 The excess return generating process (when factors are macroeconomic variables or non-traded portfolios)
4.2.3 Obtaining the (K x 1) vector of risk premia l4.3 Introducing a Bayesian framework using a Minnesota prior (Litterman's prior); 4.3.1 Prior estimates of the risk premia; 4.3.2 Posterior estimates of the risk premia; 4.4 An empirical application; 4.4.1 Data; 4.4.2 Results; 4.5 Conclusion; References; Appendix; 5 Sharpe style analysis in the MSCI sector portfolios: a Monte Carlo integration approach; 5.1 Introduction; 5.2 Methodology; 5.2.1 A Bayesian decision-theoretic approach; 5.2.2 Estimation by Monte Carlo integration; 5.3 Style analysis in the MSCI sector portfolios; 5.4 Conclusions
References6 Implication of the method of portfolio formation on asset pricing tests; 6.1 Introduction; 6.2 Models; 6.2.1 Asset pricing frameworks; 6.2.2 Specifications to be tested; 6.3 Implementation; 6.3.1 Multivariate F test; 6.3.2 Average F test; 6.3.3 Stochastic discount factor using GMM with Hansen and Jagannathan distance; 6.3.4 A look at the pricing errors under different tests; 6.4 Variables construction and data sources; 6.4.1 Data sources; 6.4.2 Independent variables: excess market return, size return factor and book-to-market return factor
6.4.3 Dependent variables: size-sorted portfolios, beta-sorted portfolios and individual assets
Record Nr. UNINA-9910457338403321
Amsterdam ; ; Oxford, : Elsevier Butterworth-Heinemann, 2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Linear factor models in finance [[electronic resource] /] / [edited by] John Knight and Stephen Satchell
Linear factor models in finance [[electronic resource] /] / [edited by] John Knight and Stephen Satchell
Pubbl/distr/stampa Amsterdam ; ; Oxford, : Elsevier Butterworth-Heinemann, 2005
Descrizione fisica 1 online resource (298 p.)
Disciplina 332.015118
Altri autori (Persone) KnightJohn L
SatchellStephen <1949->
Collana Quantitative finance series
Soggetto topico Finance - Mathematical models
Mathematics
ISBN 1-280-63881-8
9786610638819
0-08-045532-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Linear Factor Models in Finance; Contents; List of contributors; Introduction; 1 Review of literature on multifactor asset pricing models; 1.1 Theoretical reasons for existence of multiple factors; 1.2 Empirical evidence of existence of multiple factors; 1.3 Estimation of factor pricing models; Bibliography; 2 Estimating UK factor models using the multivariate skew normal distribution; 2.1 Introduction; 2.2 The multivariate skew normal distribution and some of its properties; 2.3 Conditional distributions and factor models; 2.4 Data model choice and estimation; 2.5 Empirical study
2.5.1 Basic return statistics2.5.2 Overall model fit; 2.5.3 Comparison of parameter estimates; 2.5.4 Skewness parameters; 2.5.5 Tau and time-varying conditional variance; 2.6 Conclusions; Acknowledgement; References; 3 Misspecification in the linear pricing model; 3.1 Introduction; 3.2 Framework; 3.2.1 Arbitrage Pricing Theory; 3.2.2 Multivariate F test used in linear factor model; 3.2.3 Average F test used in linear factor model; 3.3 Distribution of the multivariate F test statistics under misspecification; 3.3.1 Exclusion of a set of factors from estimation
3.3.2 Time-varying factor loadings3.4 Simulation study; 3.4.1 Design; 3.4.2 Factors serially independent; 3.4.3 Factors autocorrelated; 3.4.4 Time-varying factor loadings; 3.4.5 Simulation results; 3.5 Conclusion; Appendix: Proof of proposition 3.1 and proposition 3.2; 4 Bayesian estimation of risk premia in an APT context; 4.1 Introduction; 4.2 The general APT framework; 4.2.1 The excess return generating process (when factors are traded portfolios); 4.2.2 The excess return generating process (when factors are macroeconomic variables or non-traded portfolios)
4.2.3 Obtaining the (K x 1) vector of risk premia l4.3 Introducing a Bayesian framework using a Minnesota prior (Litterman's prior); 4.3.1 Prior estimates of the risk premia; 4.3.2 Posterior estimates of the risk premia; 4.4 An empirical application; 4.4.1 Data; 4.4.2 Results; 4.5 Conclusion; References; Appendix; 5 Sharpe style analysis in the MSCI sector portfolios: a Monte Carlo integration approach; 5.1 Introduction; 5.2 Methodology; 5.2.1 A Bayesian decision-theoretic approach; 5.2.2 Estimation by Monte Carlo integration; 5.3 Style analysis in the MSCI sector portfolios; 5.4 Conclusions
References6 Implication of the method of portfolio formation on asset pricing tests; 6.1 Introduction; 6.2 Models; 6.2.1 Asset pricing frameworks; 6.2.2 Specifications to be tested; 6.3 Implementation; 6.3.1 Multivariate F test; 6.3.2 Average F test; 6.3.3 Stochastic discount factor using GMM with Hansen and Jagannathan distance; 6.3.4 A look at the pricing errors under different tests; 6.4 Variables construction and data sources; 6.4.1 Data sources; 6.4.2 Independent variables: excess market return, size return factor and book-to-market return factor
6.4.3 Dependent variables: size-sorted portfolios, beta-sorted portfolios and individual assets
Record Nr. UNINA-9910784450703321
Amsterdam ; ; Oxford, : Elsevier Butterworth-Heinemann, 2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Linear factor models in finance / / [edited by] John Knight and Stephen Satchell
Linear factor models in finance / / [edited by] John Knight and Stephen Satchell
Edizione [1st ed.]
Pubbl/distr/stampa Amsterdam ; ; Oxford, : Elsevier Butterworth-Heinemann, 2005
Descrizione fisica 1 online resource (298 p.)
Disciplina 332.015118
Altri autori (Persone) KnightJohn L
SatchellS (Stephen)
Collana Quantitative finance series
Soggetto topico Finance - Mathematical models
Mathematics
ISBN 1-280-63881-8
9786610638819
0-08-045532-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Linear Factor Models in Finance; Contents; List of contributors; Introduction; 1 Review of literature on multifactor asset pricing models; 1.1 Theoretical reasons for existence of multiple factors; 1.2 Empirical evidence of existence of multiple factors; 1.3 Estimation of factor pricing models; Bibliography; 2 Estimating UK factor models using the multivariate skew normal distribution; 2.1 Introduction; 2.2 The multivariate skew normal distribution and some of its properties; 2.3 Conditional distributions and factor models; 2.4 Data model choice and estimation; 2.5 Empirical study
2.5.1 Basic return statistics2.5.2 Overall model fit; 2.5.3 Comparison of parameter estimates; 2.5.4 Skewness parameters; 2.5.5 Tau and time-varying conditional variance; 2.6 Conclusions; Acknowledgement; References; 3 Misspecification in the linear pricing model; 3.1 Introduction; 3.2 Framework; 3.2.1 Arbitrage Pricing Theory; 3.2.2 Multivariate F test used in linear factor model; 3.2.3 Average F test used in linear factor model; 3.3 Distribution of the multivariate F test statistics under misspecification; 3.3.1 Exclusion of a set of factors from estimation
3.3.2 Time-varying factor loadings3.4 Simulation study; 3.4.1 Design; 3.4.2 Factors serially independent; 3.4.3 Factors autocorrelated; 3.4.4 Time-varying factor loadings; 3.4.5 Simulation results; 3.5 Conclusion; Appendix: Proof of proposition 3.1 and proposition 3.2; 4 Bayesian estimation of risk premia in an APT context; 4.1 Introduction; 4.2 The general APT framework; 4.2.1 The excess return generating process (when factors are traded portfolios); 4.2.2 The excess return generating process (when factors are macroeconomic variables or non-traded portfolios)
4.2.3 Obtaining the (K x 1) vector of risk premia l4.3 Introducing a Bayesian framework using a Minnesota prior (Litterman's prior); 4.3.1 Prior estimates of the risk premia; 4.3.2 Posterior estimates of the risk premia; 4.4 An empirical application; 4.4.1 Data; 4.4.2 Results; 4.5 Conclusion; References; Appendix; 5 Sharpe style analysis in the MSCI sector portfolios: a Monte Carlo integration approach; 5.1 Introduction; 5.2 Methodology; 5.2.1 A Bayesian decision-theoretic approach; 5.2.2 Estimation by Monte Carlo integration; 5.3 Style analysis in the MSCI sector portfolios; 5.4 Conclusions
References6 Implication of the method of portfolio formation on asset pricing tests; 6.1 Introduction; 6.2 Models; 6.2.1 Asset pricing frameworks; 6.2.2 Specifications to be tested; 6.3 Implementation; 6.3.1 Multivariate F test; 6.3.2 Average F test; 6.3.3 Stochastic discount factor using GMM with Hansen and Jagannathan distance; 6.3.4 A look at the pricing errors under different tests; 6.4 Variables construction and data sources; 6.4.1 Data sources; 6.4.2 Independent variables: excess market return, size return factor and book-to-market return factor
6.4.3 Dependent variables: size-sorted portfolios, beta-sorted portfolios and individual assets
Record Nr. UNINA-9910809959403321
Amsterdam ; ; Oxford, : Elsevier Butterworth-Heinemann, 2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui