top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Frontiers of surface-enhanced raman scattering : single-nanoparticles and single cells / / edited by Yukihiro Ozaki, Katrin Kneipp, Ricardo R Aroca
Frontiers of surface-enhanced raman scattering : single-nanoparticles and single cells / / edited by Yukihiro Ozaki, Katrin Kneipp, Ricardo R Aroca
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2014
Descrizione fisica 1 online resource (367 p.)
Disciplina 543/.57
Soggetto topico Raman effect, Surface enhanced
Surfaces (Physics)
Raman spectroscopy
Spectrum analysis
ISBN 1-118-70360-X
1-118-70359-6
1-118-70357-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; List of Contributors; Preface; Chapter 1 Calculation of Surface-Enhanced Raman Spectra Including Orientational and Stokes Effects Using TDDFT/Mie Theory QM/ED Method; 1.1 Introduction: Combined Quantum Mechanics/ Electrodynamics Methods; 1.2 Computational Details; 1.3 Summary of Model Systems; 1.4 Azimuthal Averaging; 1.5 SERS of Pyridine: Models G, A, B, S, and V; 1.6 Orientation Effects in SERS of Phthalocyanines; 1.7 Two Particle QM/ED Calculations; 1.8 Summary; Acknowledgment; References
Chapter 2 Non-resonant SERS Using the Hottest Hot Spots of Plasmonic Nanoaggregates2.1 Introduction; 2.2 Aggregates of Silver and Gold Nanoparticles and Their Hot Spots; 2.2.1 Evaluation of Plasmonic Nanoaggregates by Vibrational Pumping due to a Non-resonant SERS Process; 2.2.2 Probing Plasmonic Nanoaggregates by Electron Energy Loss Spectroscopy; 2.2.3 Probing Local Fields in Hot Spots by SERS and SEHRS; 2.3 SERS Using Hot Silver Nanoaggregates and Non-resonant NIR Excitation; 2.3.1 SERS Signal vs. Concentration of the Target Molecule
2.3.2 Spectroscopic Potential of Non-resonant SERS Using the Hottest Hot Spots2.4 Summary and Conclusions; References; Chapter 3 Effect of Nanoparticle Symmetry on Plasmonic Fields: Implications for Single-Molecule Raman Scattering; 3.1 Introduction; 3.2 Methodology; 3.3 Plasmon Mode Structure of Nanoparticle Clusters; 3.3.1 Dimers; 3.3.2 Trimers; 3.4 Effect of Plasmon Modes on SMSERS; 3.4.1 Effect of the Spectral Lineshape; 3.4.2 Effect of Multiple Normal Modes; 3.5 Conclusions; Acknowledgment; References
Chapter 4 Experimental Demonstration of Electromagnetic Mechanism of SERS and Quantitative Analysis of SERS Fluctuation Based on the Mechanism4.1 Experimental Demonstration of the EM Mechanism of SERS; 4.1.1 Introduction; 4.1.2 Observations of the EM Mechanism in SERS Spectral Variations; 4.1.3 Observations of the EM Mechanism in the Refractive Index Dependence of SERS Spectra; 4.1.4 Quantitative Evaluation of the EM Mechanism of SERS; 4.1.5 Summary; 4.2 Quantitative Analysis of SERS Fluctuation Based on the EM Mechanism; 4.2.1 Introduction
4.2.2 Intensity and Spectral Fluctuation in SERS and SEF4.2.3 Framework for Analysis of Fluctuation in SERS and SEF; 4.2.4 Analysis of Intensity Fluctuation in SERS and SEF; 4.2.5 Analysis of Spectral Fluctuation in SERS and SEF; 4.2.6 Summary; 4.3 Conclusion; Acknowledgments; References; Chapter 5 Single-Molecule Surface-Enhanced Raman Scattering as a Probe for Adsorption Dynamics on Metal Surfaces; 5.1 Introduction; 5.2 Simultaneous Measurements of Conductance and SERS of a Single-Molecule Junction; 5.3 SERS Observation Using Heterometallic Nanodimers at the Single-Molecule Level
5.4 Conclusion
Record Nr. UNINA-9910140286103321
Chichester, England : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Frontiers of surface-enhanced raman scattering : single-nanoparticles and single cells / / edited by Yukihiro Ozaki, Katrin Kneipp, Ricardo R Aroca
Frontiers of surface-enhanced raman scattering : single-nanoparticles and single cells / / edited by Yukihiro Ozaki, Katrin Kneipp, Ricardo R Aroca
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2014
Descrizione fisica 1 online resource (367 p.)
Disciplina 543/.57
Soggetto topico Raman effect, Surface enhanced
Surfaces (Physics)
Raman spectroscopy
Spectrum analysis
ISBN 1-118-70360-X
1-118-70359-6
1-118-70357-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; List of Contributors; Preface; Chapter 1 Calculation of Surface-Enhanced Raman Spectra Including Orientational and Stokes Effects Using TDDFT/Mie Theory QM/ED Method; 1.1 Introduction: Combined Quantum Mechanics/ Electrodynamics Methods; 1.2 Computational Details; 1.3 Summary of Model Systems; 1.4 Azimuthal Averaging; 1.5 SERS of Pyridine: Models G, A, B, S, and V; 1.6 Orientation Effects in SERS of Phthalocyanines; 1.7 Two Particle QM/ED Calculations; 1.8 Summary; Acknowledgment; References
Chapter 2 Non-resonant SERS Using the Hottest Hot Spots of Plasmonic Nanoaggregates2.1 Introduction; 2.2 Aggregates of Silver and Gold Nanoparticles and Their Hot Spots; 2.2.1 Evaluation of Plasmonic Nanoaggregates by Vibrational Pumping due to a Non-resonant SERS Process; 2.2.2 Probing Plasmonic Nanoaggregates by Electron Energy Loss Spectroscopy; 2.2.3 Probing Local Fields in Hot Spots by SERS and SEHRS; 2.3 SERS Using Hot Silver Nanoaggregates and Non-resonant NIR Excitation; 2.3.1 SERS Signal vs. Concentration of the Target Molecule
2.3.2 Spectroscopic Potential of Non-resonant SERS Using the Hottest Hot Spots2.4 Summary and Conclusions; References; Chapter 3 Effect of Nanoparticle Symmetry on Plasmonic Fields: Implications for Single-Molecule Raman Scattering; 3.1 Introduction; 3.2 Methodology; 3.3 Plasmon Mode Structure of Nanoparticle Clusters; 3.3.1 Dimers; 3.3.2 Trimers; 3.4 Effect of Plasmon Modes on SMSERS; 3.4.1 Effect of the Spectral Lineshape; 3.4.2 Effect of Multiple Normal Modes; 3.5 Conclusions; Acknowledgment; References
Chapter 4 Experimental Demonstration of Electromagnetic Mechanism of SERS and Quantitative Analysis of SERS Fluctuation Based on the Mechanism4.1 Experimental Demonstration of the EM Mechanism of SERS; 4.1.1 Introduction; 4.1.2 Observations of the EM Mechanism in SERS Spectral Variations; 4.1.3 Observations of the EM Mechanism in the Refractive Index Dependence of SERS Spectra; 4.1.4 Quantitative Evaluation of the EM Mechanism of SERS; 4.1.5 Summary; 4.2 Quantitative Analysis of SERS Fluctuation Based on the EM Mechanism; 4.2.1 Introduction
4.2.2 Intensity and Spectral Fluctuation in SERS and SEF4.2.3 Framework for Analysis of Fluctuation in SERS and SEF; 4.2.4 Analysis of Intensity Fluctuation in SERS and SEF; 4.2.5 Analysis of Spectral Fluctuation in SERS and SEF; 4.2.6 Summary; 4.3 Conclusion; Acknowledgments; References; Chapter 5 Single-Molecule Surface-Enhanced Raman Scattering as a Probe for Adsorption Dynamics on Metal Surfaces; 5.1 Introduction; 5.2 Simultaneous Measurements of Conductance and SERS of a Single-Molecule Junction; 5.3 SERS Observation Using Heterometallic Nanodimers at the Single-Molecule Level
5.4 Conclusion
Record Nr. UNINA-9910807373703321
Chichester, England : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Surface-enhanced raman scattering : physics and applications / / Katrin Kneipp, Martin Moskovits, Harald Kneipp (eds.)
Surface-enhanced raman scattering : physics and applications / / Katrin Kneipp, Martin Moskovits, Harald Kneipp (eds.)
Edizione [1st ed. 2006.]
Pubbl/distr/stampa Berlin ; ; New York, : Springer, c2006
Descrizione fisica 1 online resource (481 p.)
Disciplina 535.846
Altri autori (Persone) KneippKatrin
MoskovitsMartin
KneippHarald
Collana Topics in applied physics
Soggetto topico Raman effect, Surface enhanced
Surfaces (Physics)
ISBN 1-280-71687-8
9786610716876
3-540-33567-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Surface-Enhanced Raman Spectroscopy: a Brief Perspective -- Electromagnetic Mechanism of SERS -- Electromagnetic Theory of SERS -- Coupled Plasmonic Plasmon/Photonic Resonance Effects in SERS -- Estimating SERS Properties of Silver-Particle Aggregates through Generalized Mie Theory -- Studying SERS from Metal Nanoparticles and Nanoparticles Aggregates with Continuum Models -- SERS From Transition Metals and Excited by Ultraviolet Light -- Electronic Mechanisms of SERS -- Two-Photon Excited Surface-Enhanced Raman Scattering -- Applications of the Enhancement of Resonance Raman Scattering and Fluorescence by Strongly Coupled Metallic Nanostructures -- Tip-Enhanced Raman Spectroscopy (TERS) -- Tip-Enhanced Near-Field Raman Scattering: Fundamentals and New Aspects for Molecular Nanoanalysis/Identification -- Single-Molecule SERS Spectroscopy -- Temporal Fluctuations in Single-Molecule SERS Spectra -- Single-Molecule Surface-Enhanced Resonance Raman Spectroscopy of the Enhanced Green Fluorescent Protein EGFP -- Surface-Enhanced Vibrational Spectroelectrochemistry: Electric-Field Effects on Redox and Redox-Coupled Processes of Heme Proteins -- Nanosensors Based on SERS for Applications in Living Cells -- Biomolecule Sensing with Adaptive Plasmonic Nanostructures -- Glucose Sensing with Surface-Enhanced Raman Spectroscopy -- Quantitative Surface-Enhanced Resonance Raman Spectroscopy for Analysis -- Rapid Analysis of Microbiological Systems Using SERS -- Surface-Enhanced Raman Scattering for Biomedical Diagnostics and Molecular Imaging -- Ultrasensitive Immunoassays Based on Surface-Enhanced Raman Scattering by Immunogold Labels -- Detecting Chemical Agents and Their Hydrolysis Products in Water.
Record Nr. UNINA-9910634037003321
Berlin ; ; New York, : Springer, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui