Glassy disordered systems [[electronic resource] ] : glass formation and universal anomalous low-energy properties / / Michael I. Klinger |
Autore | Klinger Michael I |
Pubbl/distr/stampa | Singapore, : World Scientific, 2013 |
Descrizione fisica | 1 online resource (340 p.) |
Disciplina |
620.1/44
620.144 |
Soggetto topico |
Optics
Glass |
Soggetto genere / forma | Electronic books. |
ISBN | 981-4407-48-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; CONTENTS; I. Fundamental Properties of Glasses; 1. General Description of Glasses and Glass Transition; 1.1. Metastability and disorder. Types of glasses; 1.2. Qualitative description of glass (liquid-to-glass) transition; 1.3. Kinetic and thermodynamic properties; 1.4. Slow relaxation processes; 2. Models of Glassy (Topologically Disordered) Structures; 2.1. Characteristics of glassy structures; 2.2. Homogeneous (ideal) models; 2.3. Inhomogeneous (cluster) models; 3. Some Theoretical Models of Glass Transition; 3.1. Vogel-Fulcher relation and "entropy crisis"
3.2. Role of configurational entropy, free-volume effects and "defects" diffusion3.3. Mode-coupling model: Dynamic liquid-glass transition; 4. Kohlrausch-William-Watt (KWW) Relaxation; 4.1. General features of slow relaxation processes; 4.2. Parallel-diffusion relaxation models; 4.3. Correlated, hierarchically constrained, relaxation models; 4.4. Concluding remarks; II. Anomalous Low-Energy Dynamics of Glasses; 5. Origin of Anomalous Low-Energy Properties of Glasses; 6. Experimental Background for Anomalous Low-Energy Atomic Dynamics; 6.1. Very low temperatures and frequencies 6.2. Moderately low temperatures and frequencies7. Soft-Mode Model of Low-Energy Atomic Dynamics; 7.1. Atomic soft modes and related potentials; 7.2. Probability distribution densities; 7.3. Low-energy excitations: Density of states and concentration; 7.4. Interaction of soft-mode excitations with acoustic phonons; 8. Soft-Mode Excitations of Very Low and "Intermediate" Energies; 8.1. Soft-mode tunneling states (independent two-level systems); 8.2. Soft-mode excitations of "intermediate" energies; 9. Tunneling States as Very Low Energy Limit Case 9.1. Standard tunneling model: Independent two-level systems9.2. Advanced tunneling model: Interacting two-level systems; 9.2.1. Mean-field approximation: "Spectral diffusion"; 9.2.2. Many-body effects: Collective excitations; 10. Soft-Mode Excitations of Moderately-Low Energies (Boson Peak); 10.1. Ioffe-Regel crossover for acoustic phonons as origin of boson peak; 10.2. Independent soft-mode vibrational excitations; 10.3. Total vibrational density of independent soft-mode states; 10.4. Generalization for interacting harmonic excitations 10.5. Total vibrational density of states: dynamic properties10.6. Width (attenuation) of acoustic phonons; 10.7. Thermal vibrational properties of glasses; 11. On Universal and Non-Universal Dynamic Properties of Glasses; 11.1. Very low temperatures and frequencies; 11.1.1. On universality of basic distributions in ATM; 11.1.2. On universality of soft-mode distribution inSMM; 11.2. Moderately low temperatures and frequencies; 12. Other Models for Glasses with High Frequency Sound; 12.1. Theoretical mode-coupling model; 12.2. Theoretical random-matrix model 12.3. Comparison with the soft-mode model |
Record Nr. | UNINA-9910462803403321 |
Klinger Michael I | ||
Singapore, : World Scientific, 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Glassy disordered systems : glass formation and universal anomalous low-energy properties / / Michael I. Klinger, Bar-Ilan University, Israel |
Autore | Klinger Michael I |
Pubbl/distr/stampa | Singapore, : World Scientific, 2013 |
Descrizione fisica | 1 online resource (xii, 326 pages) : illustrations |
Disciplina |
620.1/44
620.144 |
Collana | Gale eBooks |
Soggetto topico |
Glass - Effect of high temperatures on
Glass - Thermomechanical properties Atomic structure |
ISBN | 981-4407-48-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; CONTENTS; I. Fundamental Properties of Glasses; 1. General Description of Glasses and Glass Transition; 1.1. Metastability and disorder. Types of glasses; 1.2. Qualitative description of glass (liquid-to-glass) transition; 1.3. Kinetic and thermodynamic properties; 1.4. Slow relaxation processes; 2. Models of Glassy (Topologically Disordered) Structures; 2.1. Characteristics of glassy structures; 2.2. Homogeneous (ideal) models; 2.3. Inhomogeneous (cluster) models; 3. Some Theoretical Models of Glass Transition; 3.1. Vogel-Fulcher relation and "entropy crisis"
3.2. Role of configurational entropy, free-volume effects and "defects" diffusion3.3. Mode-coupling model: Dynamic liquid-glass transition; 4. Kohlrausch-William-Watt (KWW) Relaxation; 4.1. General features of slow relaxation processes; 4.2. Parallel-diffusion relaxation models; 4.3. Correlated, hierarchically constrained, relaxation models; 4.4. Concluding remarks; II. Anomalous Low-Energy Dynamics of Glasses; 5. Origin of Anomalous Low-Energy Properties of Glasses; 6. Experimental Background for Anomalous Low-Energy Atomic Dynamics; 6.1. Very low temperatures and frequencies 6.2. Moderately low temperatures and frequencies7. Soft-Mode Model of Low-Energy Atomic Dynamics; 7.1. Atomic soft modes and related potentials; 7.2. Probability distribution densities; 7.3. Low-energy excitations: Density of states and concentration; 7.4. Interaction of soft-mode excitations with acoustic phonons; 8. Soft-Mode Excitations of Very Low and "Intermediate" Energies; 8.1. Soft-mode tunneling states (independent two-level systems); 8.2. Soft-mode excitations of "intermediate" energies; 9. Tunneling States as Very Low Energy Limit Case 9.1. Standard tunneling model: Independent two-level systems9.2. Advanced tunneling model: Interacting two-level systems; 9.2.1. Mean-field approximation: "Spectral diffusion"; 9.2.2. Many-body effects: Collective excitations; 10. Soft-Mode Excitations of Moderately-Low Energies (Boson Peak); 10.1. Ioffe-Regel crossover for acoustic phonons as origin of boson peak; 10.2. Independent soft-mode vibrational excitations; 10.3. Total vibrational density of independent soft-mode states; 10.4. Generalization for interacting harmonic excitations 10.5. Total vibrational density of states: dynamic properties10.6. Width (attenuation) of acoustic phonons; 10.7. Thermal vibrational properties of glasses; 11. On Universal and Non-Universal Dynamic Properties of Glasses; 11.1. Very low temperatures and frequencies; 11.1.1. On universality of basic distributions in ATM; 11.1.2. On universality of soft-mode distribution inSMM; 11.2. Moderately low temperatures and frequencies; 12. Other Models for Glasses with High Frequency Sound; 12.1. Theoretical mode-coupling model; 12.2. Theoretical random-matrix model 12.3. Comparison with the soft-mode model |
Record Nr. | UNINA-9910786968303321 |
Klinger Michael I | ||
Singapore, : World Scientific, 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Glassy disordered systems : glass formation and universal anomalous low-energy properties / / Michael I. Klinger, Bar-Ilan University, Israel |
Autore | Klinger Michael I |
Pubbl/distr/stampa | Singapore, : World Scientific, 2013 |
Descrizione fisica | 1 online resource (xii, 326 pages) : illustrations |
Disciplina |
620.1/44
620.144 |
Collana | Gale eBooks |
Soggetto topico |
Glass - Effect of high temperatures on
Glass - Thermomechanical properties Atomic structure |
ISBN | 981-4407-48-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; CONTENTS; I. Fundamental Properties of Glasses; 1. General Description of Glasses and Glass Transition; 1.1. Metastability and disorder. Types of glasses; 1.2. Qualitative description of glass (liquid-to-glass) transition; 1.3. Kinetic and thermodynamic properties; 1.4. Slow relaxation processes; 2. Models of Glassy (Topologically Disordered) Structures; 2.1. Characteristics of glassy structures; 2.2. Homogeneous (ideal) models; 2.3. Inhomogeneous (cluster) models; 3. Some Theoretical Models of Glass Transition; 3.1. Vogel-Fulcher relation and "entropy crisis"
3.2. Role of configurational entropy, free-volume effects and "defects" diffusion3.3. Mode-coupling model: Dynamic liquid-glass transition; 4. Kohlrausch-William-Watt (KWW) Relaxation; 4.1. General features of slow relaxation processes; 4.2. Parallel-diffusion relaxation models; 4.3. Correlated, hierarchically constrained, relaxation models; 4.4. Concluding remarks; II. Anomalous Low-Energy Dynamics of Glasses; 5. Origin of Anomalous Low-Energy Properties of Glasses; 6. Experimental Background for Anomalous Low-Energy Atomic Dynamics; 6.1. Very low temperatures and frequencies 6.2. Moderately low temperatures and frequencies7. Soft-Mode Model of Low-Energy Atomic Dynamics; 7.1. Atomic soft modes and related potentials; 7.2. Probability distribution densities; 7.3. Low-energy excitations: Density of states and concentration; 7.4. Interaction of soft-mode excitations with acoustic phonons; 8. Soft-Mode Excitations of Very Low and "Intermediate" Energies; 8.1. Soft-mode tunneling states (independent two-level systems); 8.2. Soft-mode excitations of "intermediate" energies; 9. Tunneling States as Very Low Energy Limit Case 9.1. Standard tunneling model: Independent two-level systems9.2. Advanced tunneling model: Interacting two-level systems; 9.2.1. Mean-field approximation: "Spectral diffusion"; 9.2.2. Many-body effects: Collective excitations; 10. Soft-Mode Excitations of Moderately-Low Energies (Boson Peak); 10.1. Ioffe-Regel crossover for acoustic phonons as origin of boson peak; 10.2. Independent soft-mode vibrational excitations; 10.3. Total vibrational density of independent soft-mode states; 10.4. Generalization for interacting harmonic excitations 10.5. Total vibrational density of states: dynamic properties10.6. Width (attenuation) of acoustic phonons; 10.7. Thermal vibrational properties of glasses; 11. On Universal and Non-Universal Dynamic Properties of Glasses; 11.1. Very low temperatures and frequencies; 11.1.1. On universality of basic distributions in ATM; 11.1.2. On universality of soft-mode distribution inSMM; 11.2. Moderately low temperatures and frequencies; 12. Other Models for Glasses with High Frequency Sound; 12.1. Theoretical mode-coupling model; 12.2. Theoretical random-matrix model 12.3. Comparison with the soft-mode model |
Record Nr. | UNINA-9910807339103321 |
Klinger Michael I | ||
Singapore, : World Scientific, 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|