Two classes of Riemannian manifolds whose geodesic flows are integrable / / Kazuyoshi Kiyohara
| Two classes of Riemannian manifolds whose geodesic flows are integrable / / Kazuyoshi Kiyohara |
| Autore | Kiyohara Kazuyoshi <1954-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [1997] |
| Descrizione fisica | 1 online resource (159 p.) |
| Disciplina |
510 s
516.3/73 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Geodesic flows
Riemannian manifolds |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-0208-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Preface""; ""Part 1. Liouville Manifolds""; ""Introduction""; ""Preliminary remarks and notations""; ""1. Local Structure of Proper Liouville Manifolds""; ""1.1. Liouville manifolds and the properness""; ""1.2. Infinitesimal structure at a point in M[sup(s)]""; ""1.3. Local structure around a point in M[sup(s)]""; ""1.4. Proof of Lemma 1.2.7""; ""2. Global Structure of Proper Liouville Manifolds""; ""2.1. Submanifolds J""; ""2.2. Admissible submanifolds""; ""2.3. The core of a proper Liouville manifold""; ""3. Proper Liouville Manifolds of Rank One""
""3.1. Configuration of zeros and type of cores""""3.2. Possible cores""; ""3.3. Constructing a Liouville manifold from a possible core""; ""3.4. Classification""; ""3.5. Isomorphisms and isometries""; ""3.6. C[sub(2)]π-metrics""; ""Appendix. Simply Connected Manifolds of Constant Curvature""; ""A.1. Possible cores""; ""A.2. The sphere S[sup(n)]""; ""A.3. The euclidean space R[sup(n)]""; ""A.4. The hyperbolic space H[sup(n)]""; ""Part 2. Kahler-Liouville Manifolds""; ""Introduction""; ""Preliminary remarks and notations""; ""1. Local calculus on M[sup(1)]""; ""2. Summing up the local data"" ""3. Structure of M � M[sup(1)""""4. Torus action and the invariant hypersurfaces""; ""5. Properties as a toric variety""; ""6. Bundle structure associated with a subset of A""; ""7. The case where #A = 1""; ""8. Existence theorem""; ""References"" |
| Record Nr. | UNINA-9910480997503321 |
Kiyohara Kazuyoshi <1954->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [1997] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Two classes of Riemannian manifolds whose geodesic flows are integrable / / Kazuyoshi Kiyohara
| Two classes of Riemannian manifolds whose geodesic flows are integrable / / Kazuyoshi Kiyohara |
| Autore | Kiyohara Kazuyoshi <1954-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [1997] |
| Descrizione fisica | 1 online resource (159 p.) |
| Disciplina |
510 s
516.3/73 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Geodesic flows
Riemannian manifolds |
| ISBN | 1-4704-0208-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Preface""; ""Part 1. Liouville Manifolds""; ""Introduction""; ""Preliminary remarks and notations""; ""1. Local Structure of Proper Liouville Manifolds""; ""1.1. Liouville manifolds and the properness""; ""1.2. Infinitesimal structure at a point in M[sup(s)]""; ""1.3. Local structure around a point in M[sup(s)]""; ""1.4. Proof of Lemma 1.2.7""; ""2. Global Structure of Proper Liouville Manifolds""; ""2.1. Submanifolds J""; ""2.2. Admissible submanifolds""; ""2.3. The core of a proper Liouville manifold""; ""3. Proper Liouville Manifolds of Rank One""
""3.1. Configuration of zeros and type of cores""""3.2. Possible cores""; ""3.3. Constructing a Liouville manifold from a possible core""; ""3.4. Classification""; ""3.5. Isomorphisms and isometries""; ""3.6. C[sub(2)]π-metrics""; ""Appendix. Simply Connected Manifolds of Constant Curvature""; ""A.1. Possible cores""; ""A.2. The sphere S[sup(n)]""; ""A.3. The euclidean space R[sup(n)]""; ""A.4. The hyperbolic space H[sup(n)]""; ""Part 2. Kahler-Liouville Manifolds""; ""Introduction""; ""Preliminary remarks and notations""; ""1. Local calculus on M[sup(1)]""; ""2. Summing up the local data"" ""3. Structure of M � M[sup(1)""""4. Torus action and the invariant hypersurfaces""; ""5. Properties as a toric variety""; ""6. Bundle structure associated with a subset of A""; ""7. The case where #A = 1""; ""8. Existence theorem""; ""References"" |
| Record Nr. | UNINA-9910788733203321 |
Kiyohara Kazuyoshi <1954->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [1997] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Two classes of Riemannian manifolds whose geodesic flows are integrable / / Kazuyoshi Kiyohara
| Two classes of Riemannian manifolds whose geodesic flows are integrable / / Kazuyoshi Kiyohara |
| Autore | Kiyohara Kazuyoshi <1954-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [1997] |
| Descrizione fisica | 1 online resource (159 p.) |
| Disciplina |
510 s
516.3/73 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Geodesic flows
Riemannian manifolds |
| ISBN | 1-4704-0208-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Preface""; ""Part 1. Liouville Manifolds""; ""Introduction""; ""Preliminary remarks and notations""; ""1. Local Structure of Proper Liouville Manifolds""; ""1.1. Liouville manifolds and the properness""; ""1.2. Infinitesimal structure at a point in M[sup(s)]""; ""1.3. Local structure around a point in M[sup(s)]""; ""1.4. Proof of Lemma 1.2.7""; ""2. Global Structure of Proper Liouville Manifolds""; ""2.1. Submanifolds J""; ""2.2. Admissible submanifolds""; ""2.3. The core of a proper Liouville manifold""; ""3. Proper Liouville Manifolds of Rank One""
""3.1. Configuration of zeros and type of cores""""3.2. Possible cores""; ""3.3. Constructing a Liouville manifold from a possible core""; ""3.4. Classification""; ""3.5. Isomorphisms and isometries""; ""3.6. C[sub(2)]π-metrics""; ""Appendix. Simply Connected Manifolds of Constant Curvature""; ""A.1. Possible cores""; ""A.2. The sphere S[sup(n)]""; ""A.3. The euclidean space R[sup(n)]""; ""A.4. The hyperbolic space H[sup(n)]""; ""Part 2. Kahler-Liouville Manifolds""; ""Introduction""; ""Preliminary remarks and notations""; ""1. Local calculus on M[sup(1)]""; ""2. Summing up the local data"" ""3. Structure of M � M[sup(1)""""4. Torus action and the invariant hypersurfaces""; ""5. Properties as a toric variety""; ""6. Bundle structure associated with a subset of A""; ""7. The case where #A = 1""; ""8. Existence theorem""; ""References"" |
| Record Nr. | UNINA-9910811889403321 |
Kiyohara Kazuyoshi <1954->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , [1997] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||