top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Sustainable and Environmental Hydrology, Hydrogeology, Hydrochemistry and Water Resources : Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018 / / edited by Helder I. Chaminé, Maurizio Barbieri, Ozgur Kisi, Mingjie Chen, Broder J. Merkel
Advances in Sustainable and Environmental Hydrology, Hydrogeology, Hydrochemistry and Water Resources : Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018 / / edited by Helder I. Chaminé, Maurizio Barbieri, Ozgur Kisi, Mingjie Chen, Broder J. Merkel
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (416 pages)
Disciplina 363.6
Collana Advances in Science, Technology & Innovation, IEREK Interdisciplinary Series for Sustainable Development
Soggetto topico Earth sciences
Water
Hydrology
Ecology
Earth Sciences
Environmental Sciences
ISBN 3-030-01572-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Hydrology, Climatology and Water-Related Ecosystems -- Hydrochemistry Quality and Isotopic Hydrology -- Groundwater Assessment, Management, and Modelling -- Water Resources Sustainability and Climate Change -- Hydrologic Engineering and Urban Groundwater.
Record Nr. UNINA-9910337922303321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation : Theory and Practice of Hazard Mitigation / / edited by Ravinesh C. Deo, Pijush Samui, Ozgur Kisi, Zaher Mundher Yaseen
Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation : Theory and Practice of Hazard Mitigation / / edited by Ravinesh C. Deo, Pijush Samui, Ozgur Kisi, Zaher Mundher Yaseen
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (477 pages) : illustrations
Disciplina 346.73046917
Collana Springer Transactions in Civil and Environmental Engineering
Soggetto topico Computational intelligence
Fire prevention
Environmental sciences
Machine learning
Hydrology
Big data
Computational Intelligence
Fire Science, Hazard Control, Building Safety
Environmental Science and Engineering
Machine Learning
Hydrology/Water Resources
Big Data
ISBN 981-15-5772-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1: Drought Index Prediction using Data Intelligent Analytic Models: A Review -- Chapter 2: Bayesian Markov Chain Monte Carlo based copulas: Factoring the Role of Large-scale Climate Indices in Monthly Flood Prediction -- Chapter 3: Gaussian Naive Bayes Classification Algorithm for Drought and Flood Risk Reduction -- Chapter 4: Hydrological Drought Investigation using Streamflow Drought Index -- Chapter 5: Intelligent Data Analytics Approaches for Predicting Dissolved Oxygen Concentration in River: Extremely Randomized Tree Vs Random Forest, MLPNN and MLR -- Chapter 6: Evolving Connectionist Systems versus Neuro-Fuzzy System for Estimating Total Dissolved Gas at Forebay and Tailwater of Dams Reservoirs -- Chapter 7: Modulation of Tropical Cyclone Genesis by Madden-Julian Oscillation in the Southern Hemisphere -- Chapter 8: Intelligent Data Analytics for Time-series, Trend Analysis and Drought Indices Comparison -- Chapter 9: Conjunction Model Design for Intermittent Streamflow Forecasts: Extreme Learning Machine with Discrete Wavelet Transform -- Chapter 10: Systematic Integration of Artificial Intelligence Towards Evaluating Response of Materials and Structures in Extreme Conditions. .
Record Nr. UNINA-9910483360203321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management
Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management
Autore Kisi Ozgur
Pubbl/distr/stampa Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Descrizione fisica 1 online resource (238 p.)
Soggetto topico Research & information: general
Soggetto non controllato additive regression
artificial intelligence
artificial neural network
atmospheric reanalysis
bagging
Bayesian model averaging
big data
calibration
CWP
dagging
Daymet V3
EEFlux
ensemble modeling
extension principle
flood routing
fuzzy sets and systems
Google Earth Engine
Govindpur
groundwater
groundwater level prediction
hydroinformatics
hydrologic model
improved extreme learning machine (IELM)
irrigation performance
Kernel extreme learning machines
M5 model tree
machine learning
multivariate adaptive regression spline
Muskingum method
n/a
NDVI
neural network
nitrogen compound
nitrogen prediction
non-linear modeling
PACF
particle swarm optimization
prediction intervals
prediction models
principal component analysis
random subspace
rotation forest
satellite precipitation
sensitivity analysis
shortwave radiation flux density
South Korea
spatiotemporal variation
streamflow forecasting
streamflow simulation
support vector machine
sustainability
sustainable development
SVM-LF
SVM-RF
uncertainty
uncertainty analysis
ungauged basin
WANN
water conservation
water resources
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910557448103321
Kisi Ozgur  
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui