top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Theory of cryptography : 20th international conference, TCC 2022, Chicago, IL, USA, November 7-10, 2022, proceedings, Part I / / edited by Eike Kiltz and Vinod Vaikuntanathan
Theory of cryptography : 20th international conference, TCC 2022, Chicago, IL, USA, November 7-10, 2022, proceedings, Part I / / edited by Eike Kiltz and Vinod Vaikuntanathan
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (748 pages)
Disciplina 652.8
Collana Lecture Notes in Computer Science
Soggetto topico Cryptography
Data encryption (Computer science)
ISBN 3-031-22318-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents - Part I -- Contents - Part II -- Contents - Part III -- Post-quantum Cryptography -- Post-quantum Insecurity from LWE -- 1 Introduction -- 1.1 Our Results -- 1.2 Related Work -- 2 Technical Overview -- 3 Open Problems -- 4 Preliminaries -- 4.1 Interactive Proofs of Quantumness -- 5 Deterministic Oracles with Quantum Advantage -- 5.1 Quantum Advantage for Unbounded-Classical Query Algorithms -- 5.2 Quantum Disclosure of Secrets -- 6 Counterexamples for Post-quantum Security -- 6.1 Counterexamples for Standard Cryptographic Primitives -- 6.2 Counterexamples for One-Time Primitives -- References -- Adaptive Versus Static Multi-oracle Algorithms, and Quantum Security of a Split-Key PRF -- 1 Introduction -- 2 Preliminaries -- 3 A General Adaptive-to-Static Reduction for Multi-oracle Algorithms -- 3.1 Our Result -- 3.2 The Technical Core -- 3.3 Wrapping up the Proof of Theorem 1 -- 3.4 Applications -- 4 Quantum Security of a Split-Key PRF -- 4.1 Hybrid Security and skPRFs -- 4.2 Quantum-Security of the skPRF -- 4.3 Proof of Theorem 2 -- References -- The Parallel Reversible Pebbling Game: Analyzing the Post-quantum Security of iMHFs -- 1 Introduction -- 1.1 Our Results -- 1.2 Technical Overview -- 1.3 Related Work -- 2 Parallel Reversible Pebbling Games -- 3 Reversible Pebbling Attacks and Applications on iMHFs -- 3.1 Warmup: Parallel Reversible Pebbling Attack on a Line Graph -- 3.2 Reversible Pebbling Attacks on (e,d)-Reducible DAGs -- 3.3 Reversible Pebbling Attacks Using an Induced Line Graph -- 4 Reversible Pebbling Attacks for Minimizing Cumulative Complexity -- 4.1 A Reversible Pebbling Attack -- References -- Quantum Rewinding for Many-Round Protocols -- 1 Introduction -- 1.1 Our Results -- 1.2 Related Work -- 1.3 Organization -- 2 Technical Overview -- 2.1 Quantum Rewinding.
2.2 Lattice-Based Bulletproofs -- 3 Preliminaries -- 3.1 Lattices -- 3.2 Quantum Information -- 4 Recursive Special Sound and Last-Round Collapsing Arguments -- 5 Quantum Tree-Extraction -- 5.1 Notation and Quantum Algorithms -- 5.2 Description of the Extractor -- 5.3 Correctness -- 6 Collapsing Hash Function Families -- 6.1 Definitions -- 6.2 Bounded Homomorphic Public-Key Encryption -- 6.3 A Fold-Collapsing Hash Function -- References -- Interactive Proofs -- Fiat-Shamir Transformation of Multi-round Interactive Proofs -- 1 Introduction -- 1.1 Background and State of the Art -- 1.2 Our Results -- 1.3 Related Work -- 1.4 Structure of the Paper -- 2 Preliminaries -- 2.1 (Non-)Interactive Proofs -- 2.2 Negative Hypergeometric Distribution -- 3 An Abstract Sampling Game -- 4 Fiat-Shamir Transformation of Sigma-Protocols -- 5 Refined Analysis of the Abstract Sampling Game -- 6 Fiat-Shamir Transformation of Multi-round Protocols -- 7 The Fiat-Shamir Transformation of Parallel Repetitions -- References -- Steganography-Free Zero-Knowledge -- 1 Introduction -- 1.1 Our Contribution -- 1.2 Applications -- 1.3 Our Techniques -- 1.4 Related Work -- 2 Preliminaries -- 3 Defining Steganography-Freeness -- 3.1 Steganography-Free Zero-Knowledge -- 4 A Steganography-Free ZK Protocol -- 4.1 Our Protocol -- 4.2 Analysis -- References -- Vector Commitments over Rings and Compressed -Protocols -- 1 Introduction -- 1.1 Our Contribution -- 1.2 Related Work -- 2 Technical Overview -- 3 Preliminaries -- 3.1 Vector Commitments -- 3.2 Interactive Proofs -- 4 Vector Commitments over Zm -- 4.1 Vector Commitments from Single-Value Commitments -- 4.2 Single-Value Commitments via Commitment Friendly Groups -- 4.3 Single-Value Commitment Schemes for Even m -- 5 Compressed -Protocol -- 5.1 Vector Commitments over Ring Extensions -- 5.2 Standard -Protocol.
5.3 Compression Mechanism -- 5.4 Compressed -Protocol -- 6 An Application: Verifiable Computation on Encrypted Data with Context-Hiding -- References -- Universally Composable -protocols in the Global Random-Oracle Model -- 1 Introduction -- 2 Preliminaries -- 2.1 -protocols, Revisited -- 2.2 Straight-Line Compilers -- 2.3 OR-Protocols -- 3 Properties of GUC NIZKPoK -- 3.1 GroRO and GrpoRO, Revisited -- 3.2 The NIZKPoK Ideal Functionality -- 3.3 The CRS Ideal Functionality -- 3.4 GUC Security Definitions -- 3.5 GUC NIZKPoK are Complete, NIM-SHVZK, and NI-SSS -- 4 GUC NIZKPoK in the Programmable Global ROM -- 5 GUC NIZKPoK in the Observable Global ROM -- 5.1 Generating a CRS that Plays Nice with -protocols -- 5.2 GUC Compiler -- 5.3 Realizing FNIZK in the GRO-FCRS-hybrid Model -- 6 Constructions via the Randomized Fischlin Transform -- 6.1 The Randomized Fischlin Transform, Revisited -- 6.2 Efficient, GUC NIZKPoK in the GrpoRO-hybrid Model -- 6.3 Efficient, GUC NIZKPoK in the GroRO-FCRS-hybrid Model -- References -- Quantum Cryptography -- Pseudorandom (Function-Like) Quantum State Generators: New Definitions and Applications -- 1 Introduction -- 1.1 Our Results -- 1.2 Threshold for Computational Assumptions -- 1.3 Cryptographic Applications with Classical Communication -- 2 Preliminaries -- 2.1 Distance Metrics and Matrix Norms -- 2.2 Quantum Algorithms -- 2.3 Pseudorandomness Notions -- 3 Adaptive Security -- 3.1 Classical Access -- 3.2 Quantum Access -- 4 On the Necessity of Computational Assumptions -- 5 Tomography with Verification -- 5.1 Correctness Notions for Verifiable Tomography -- 5.2 Verifiable Tomography Procedures -- 6 Applications -- 6.1 Commitment Scheme -- References -- Candidate Trapdoor Claw-Free Functions from Group Actions with Applications to Quantum Protocols -- 1 Introduction -- 1.1 Our Results -- 1.2 Technical Overview.
2 Preliminaries -- 2.1 Quantum Information -- 2.2 Cryptographic Group Actions and Extended LHS Assumption -- 3 Weak Trapdoor Claw-Free Functions -- 3.1 XOR Lemmas for Adaptive Hardcore Bits -- 4 wTCF from Extended LHS Assumption -- 5 Computational Test of Qubit -- 5.1 Definition -- 5.2 Protocol -- 5.3 Analysis -- References -- Collusion Resistant Copy-Protection for Watermarkable Functionalities -- 1 Introduction -- 1.1 Our Results -- 1.2 Related Works -- 1.3 Technical Overview -- 1.4 Discussions and Open Problems -- 1.5 Organization -- 2 Preliminaries -- 2.1 Coset States -- 2.2 Measure Success Probabilities of Quantum Adversaries: Projective/Threshold Implementation -- 3 Collusion Resistant Unclonable Decryption -- 3.1 Definitions -- 3.2 Construction -- 3.3 Proof of Anti-Piracy -- References -- Secret-Sharing and Applications -- On Secret Sharing, Randomness, and Random-less Reductions for Secret Sharing -- 1 Introduction -- 1.1 Our Results -- 1.2 Related Work -- 1.3 Technical Overview -- 1.4 Open Questions -- 2 Preliminaries -- 2.1 Notation -- 2.2 Probability Theory -- 2.3 Amplifying Leakage-Resilience -- 3 Randomness Extraction from Leakage-Resilient Secret Sharing Schemes -- 3.1 The Main Result -- 3.2 Efficient Leakage-Resilient Secret Sharing Requires Efficiently Extractable Randomness -- 3.3 An Extension to the Setting of Computational Security -- 4 Random-Less Reductions for Secret Sharing -- 4.1 Distribution Designs from Partial Steiner Systems -- A Proof of Lemma3 -- References -- Leakage-resilient Linear Secret-sharing Against Arbitrary Bounded-size Leakage Family -- 1 Introduction -- 1.1 Our Contribution -- 1.2 Prior Relevant Works -- 2 Technical Overview -- 3 Preliminaries -- 3.1 Matrices -- 3.2 Codes and Linear Secret-sharing Schemes -- 3.3 Joint Leakage-resilience of Secret-sharing Scheme -- 3.4 Fourier Analysis.
4 Leakage-resilience of Fully Random Code -- 5 Leakage-resilience of Shamir Secret-sharing Schemes with Random Evaluation Places -- 6 Leakage-resilience of Partially Random Code -- References -- Asymptotically Free Broadcast in Constant Expected Time via Packed VSS -- 1 Introduction -- 1.1 Our Results -- 1.2 Applications and Discussions -- 1.3 Related Work -- 2 Technical Overview -- 2.1 Improved Broadcast in Constant Expected Rounds -- 2.2 Packed Verifiable Secret Sharing -- 2.3 Optimal Gradecast -- 3 Preliminaries -- 3.1 Bivariate Polynomials -- 3.2 Finding (n,t)-STAR -- 4 Packed Verifiable Secret Sharing -- 5 Balanced Gradecast -- 5.1 The Gradecast Protocol -- 5.2 Making the Protocol Balanced -- 6 Multi-moderated Packed Secret Sharing -- 6.1 Reconstruction -- 7 Oblivious Leader Election -- 8 Broadcast -- 8.1 Byzantine Agreement -- 8.2 Broadcast and Parallel-broadcast -- References -- Succinct Proofs -- On Black-Box Constructions of Time and Space Efficient Sublinear Arguments from Symmetric-Key Primitives -- 1 Introduction -- 1.1 Our Results -- 1.2 Technical Overview -- 1.3 A Comparison with Related Work -- 2 Preliminaries -- 2.1 Circuit Notations -- 2.2 Zero-Knowledge Arguments -- 2.3 Random-Access Machines (RAM) -- 2.4 Succinct Matrix -- 3 Lower Bound for Space-Efficient Encoding Schemes -- 3.1 Interpreting the Lower Bound in the Context of Proof Systems -- 3.2 Warm Up: A Simple Lower Bound -- 3.3 Lower Bound for Multi-pass Space-Efficient Encoding Schemes -- 4 Main Construction -- 5 Space-Efficient Affine Code Testing for Interleaved Reed Solomon Codes -- References -- A Toolbox for Barriers on Interactive Oracle Proofs -- 1 Introduction -- 1.1 Our Results -- 1.2 Related Work -- 2 Techniques -- 2.1 Tools for Length and Round Reduction -- 2.2 Tools for Improving Completeness -- 2.3 Tools for Derandomization.
2.4 Deriving Our Results Using the Tools.
Record Nr. UNISA-996503468403316
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Theory of cryptography : 20th international conference, TCC 2022, Chicago, IL, USA, November 7-10, 2022, proceedings, Part II / / edited by Eike Kiltz and Vinod Vaikuntanathan
Theory of cryptography : 20th international conference, TCC 2022, Chicago, IL, USA, November 7-10, 2022, proceedings, Part II / / edited by Eike Kiltz and Vinod Vaikuntanathan
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (813 pages)
Disciplina 652.8
Collana Lecture Notes in Computer Science
Soggetto topico Cryptography
Data encryption (Computer science)
ISBN 3-031-22365-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents - Part II -- Encryption -- Forward-Secure Encryption with Fast Forwarding -- 1 Introduction -- 1.1 Basic Solutions and a New Dimension -- 1.2 Our Contributions -- 1.3 Related Work -- 2 Preliminaries -- 3 Fast-Forwarding in the Bulletin Board Model -- 3.1 Bulletin Board -- 3.2 Fast-Forwardable Stream Ciphers -- 3.3 Fast-Forwardable Updatable Public-Key Encryption -- 4 Constructing a Fast-Forwardable PRNG -- 4.1 The Basic Construction -- 4.2 Supporting an Unbounded Number of Epochs -- 5 Fast-Forwardable Updatable Public-Key Encryption -- 5.1 Update-Homomorphic UPKE -- 5.2 Update Graphs -- 5.3 A Generic Construction -- 6 Conclusions and Open Problems -- References -- Rate-1 Incompressible Encryption from Standard Assumptions -- 1 Introduction -- 1.1 Our Results -- 1.2 Comparison with Previous Work -- 2 Technical Overview -- 2.1 The Scheme of GWZ -- 2.2 The Big Picture -- 2.3 Rate-1 Incompressible Symmetric-Key Encryption -- 2.4 From Symmetric-Key to Public-Key Incompressible Encryption via Hash Proof Systems -- 2.5 Extension to CCA Security -- 3 Preliminaries -- 3.1 Decisional Diffie-Hellman Assumption -- 3.2 Public-Key Encryption -- 3.3 HILL-Entropic Encodings -- 4 Incompressible Symmetric-Key Encryption -- 4.1 Definition -- 4.2 Construction -- 5 Programmable Hash Proof Systems -- 5.1 Definitions -- 5.2 Programmable Hash Proof System from DDH -- 5.3 2-Smooth Hash Proof System from DDH -- 6 Incompressible PKE from Incompressible SKE and HPS -- 6.1 CCA Incompressible Encryption -- 6.2 Construction -- References -- Achievable CCA2 Relaxation for Homomorphic Encryption -- 1 Introduction -- 2 Preliminaries -- 3 A Sufficient and Achievable Relaxation of CCA2 -- 3.1 funcCPA-Security: A Sufficient Relaxation of CCA2 -- 3.2 Sanitized HE Schemes are funcCPA-Secure -- 3.3 funcCPA Security of leveled HE Schemes.
3.4 Barriers on Proving funcCPA for Existing HE Schemes -- 4 CPA Insufficiency Against Malicious Adversaries -- 5 CPA Implies Privacy Against Semi-honest Adversaries -- 6 Conclusions -- A Proof of Lemma 2 -- References -- Multi-party Computation I -- Round-Optimal Honest-Majority MPC in Minicrypt and with Everlasting Security -- 1 Introduction -- 1.1 Our Contribution -- 2 Technical Overview -- 2.1 Main Theorem -- 2.2 Strong Honest-Majority MPC with Everlasting Security from OWF -- References -- Sublinear Secure Computation from New Assumptions -- 1 Introduction -- 1.1 Our Results -- 2 Technical Overview -- 2.1 Sublinear 2PC for Layered Circuits from Decomposable Batch OT -- 2.2 Polylogarithmic PIR from CDH -- 3 Sublinear Computation for loglog-Depth Circuits -- 3.1 Decomposable Two-Round Batch Oblivious Transfer -- 3.2 Instantiation Under QR +LPN, Adapted from ch5EC:BBDP22 -- 3.3 Bounded Query Repetitions -- 3.4 Two-Round Batch SPIR with Correlated Queries -- 3.5 Sublinear Computation of loglog-Depth Circuits from corrSPIR -- 3.6 Extension to Layered Circuits -- 4 Polylogarithmic PIR from CDH -- 4.1 Laconic Private Set Intersection -- 4.2 From Laconic PSI to Half-PIR -- 4.3 From Polylogarithmic Half-PIR to Polylogarithmic PIR -- References -- How to Obfuscate MPC Inputs -- 1 Introduction -- 1.1 Overview of Our Results -- 1.2 Related Work -- 2 Preliminaries -- 2.1 Idealized Models -- 2.2 Obfuscation -- 3 Defining io2PC -- 3.1 Simulation Rate -- 3.2 Server Compromise and Offline Evaluation -- 3.3 Preventing Precomputation -- 4 io2PC for Random-Oracle-Model Obfuscation -- 4.1 Oblivious PRF -- 4.2 io2PC Protocol -- 5 io2PC for Generic-Group Obfuscations -- 5.1 Generic Groups -- 5.2 Personalized Generic Group -- 5.3 Protocol for Personalized Generic Groups -- 5.4 io2PC Protocol for Generic-Group Obfuscation -- 6 Compatible Obfuscations.
6.1 Point Functions -- 6.2 Hyperplane Membership -- References -- Statistical Security in Two-Party Computation Revisited -- 1 Introduction -- 1.1 Our Contributions -- 2 Technical Overview -- 2.1 One-Sided Statistical Two-Party Computation Protocol -- 2.2 Constructing Our Ingredients from eOT -- 3 Preliminaries -- 3.1 Notations -- 3.2 Oblivious Transfer Protocols -- 3.3 Additional Preliminaries -- 4 Three Round Oblivious Transfer Protocols -- 4.1 Statistically Receiver Private Indistinguishability-Based OT -- 4.2 Three Round Statistically Sender Private OT -- 5 One-Sided Statistically Secure 2PC Against Explainable Parties -- 5.1 Protocol exp -- 5.2 Two Round Statistically Hiding Commitment -- 6 One-Sided Statistically Secure 2PC Against Malicious Corruptions -- 6.1 Conditional Disclosure of Secrets in the Preprocessing Model -- 6.2 Protocol mal -- 7 Instantiations of eOT -- References -- Protocols: Key Agreement and Commitments -- On the Worst-Case Inefficiency of CGKA -- 1 Introduction -- 1.1 Our Results -- 1.2 Compact Key Exchange -- 1.3 Standard Security of Continuous Group Key Agreement -- 1.4 Equivalence of CKE and CGKA Worst-Case Communication Complexity -- 1.5 Black-Box Compact Key Exchange Lower Bound -- 1.6 No Single Optimal CGKA Protocol Exists -- 1.7 Lessons Learned for Practice -- 2 Definitions -- 2.1 Continuous Group Key Agreement -- 2.2 Compact Key Exchange -- 3 From CGKA to CKE Tightly -- 3.1 Embedding CGKA Ciphertexts in CKE Ciphertexts -- 4 CKE Lower Bound from PKE -- 4.1 Proof Outline -- 4.2 Attack for (CRSGeng, Initg, Comme, Derived) -- 5 No Single Optimal CGKA Protocol Exists -- 5.1 Bad Sequences of Operations -- 5.2 Suboptimality of All CGKA Protocols -- References -- Adaptive Multiparty NIKE -- 1 Introduction -- 1.1 Prior Work and Motivation -- 1.2 Technical Challenges -- 1.3 Result Summary -- 1.4 Technical Overview.
1.5 Organization -- 2 Preliminaries -- 2.1 Multiparty NIKE -- 2.2 Constrained PRFs -- 3 Enhancing Multi-party NIKE -- 3.1 Achieving Adversarial Correctness -- 3.2 Removing the CRS -- 3.3 Adding Shared Key Queries -- 3.4 Putting It All Together -- 4 The Equivalence of Multiparty NIKE and 1-SF-PRF -- 4.1 From 1-SF-PRF to Special Constrained PRF -- 4.2 From Special Constrained PRF to Multiparty NIKE with Setup -- 5 Construction of 1-SF-PRFs -- 5.1 Construction -- 5.2 Security Proof -- References -- On the Impossibility of Algebraic Vector Commitments in Pairing-Free Groups -- 1 Introduction -- 1.1 Our Results -- 1.2 Our Techniques -- 1.3 Interpretation of Our Impossibility and Further Implications -- 1.4 Related Work -- 1.5 Organization of the Paper -- 2 Preliminaries -- 2.1 Vector Commitments -- 2.2 Digital Signatures -- 3 Algebraic Vector Commitments -- 3.1 Generic Transformation from VCs to Signatures -- 3.2 -Unforgeability -- 4 Algebraic Signatures -- 4.1 Attack to Schemes with Strictly Linear Verification -- 4.2 Attack to Schemes with Generic Verification -- 5 Conclusions -- 5.1 Impossibility of Algebraic Vector Commitments -- 5.2 Impossibility of Algebraic Signatures -- References -- Four-Round Black-Box Non-malleable Schemes from One-Way Permutations -- 1 Introduction -- 1.1 Our Contributions -- 2 Overview of Techniques -- 2.1 Our NMZKC Protocol and New Commitment Schemes -- 2.2 4-Round Non-malleable Commitment nmc -- 3 Preliminaries -- 3.1 Commitment Schemes -- 3.2 Non-malleable Commitments -- 3.3 -Commitments -- 3.4 Adaptive-Input SHVZK -- 3.5 One-of-Two Binding Commitments -- 3.6 MPC Definitions -- 3.7 Verifiable Secret Sharing (VSS) -- 4 Non-malleable HVZK with Respect to Commitment -- 5 Our Delayed-Input MPC-in-the-Head Protocol AI -- 6 The Building Blocks of the 4-Round Black-Box Non-malleable Commitment Scheme.
6.1 Commitment from Verifiable Secret Sharing -- 6.2 Commit-and-Prove -- 6.3 The 4-Round Non-malleable Commitment Scheme of ch11FOCS:GRRV14 -- 7 Our 4-Round Black-Box Non-malleable Commitment Scheme -- 7.1 Formal Description of nmc = ((Snmc , Rnmc ), Decnmc ) -- 8 Comparison with Previous Non-black-box Approaches to Four-Round Non-malleable Commitments -- References -- Theory I: Sampling and Friends -- A Tight Computational Indistinguishability Bound for Product Distributions -- 1 Introduction -- 1.1 Related Work -- 1.2 Organization -- 2 Definitions -- 2.1 Notation -- 3 The Non-uniform Bounds and Tightness -- 3.1 The N-Fold Case -- 3.2 Tightness -- 4 The Uniform Variant -- 5 Applications -- 6 Open Questions -- References -- Secure Sampling with Sublinear Communication -- 1 Introduction -- 1.1 Our Work -- 1.2 Technical Overview -- 1.3 Related Work -- 2 Two-Party L1 Sampling -- 2.1 A Toy Protocol Towards Securely Realizing FL1 -- 2.2 Secure L1 Sampling Protocol -- 3 Two Party L2 Sampling -- 3.1 A Non-private L2 Sampling Protocol with (1) Communication -- 3.2 Secure L2 Sampling from FHE -- 3.3 A Non-private Lp Sampling Protocol with (1) Communication -- 4 Two-Party Product Sampling -- 4.1 Impossibility of Sublinear Product Sampling -- 4.2 Product Sampling While Leaking at Most the Inner Product -- 5 Product Sampling in Constant Rounds -- 5.1 Secure Approximation of the Inner Product -- 5.2 Constant-Round Protocol for Product Sampling -- References -- Secure Non-interactive Simulation from Arbitrary Joint Distributions -- 1 Introduction -- 2 Overview of Our Contributions -- 2.1 Overview of Our Results -- 2.2 Overview of Our Technical Contributions -- 3 Preliminaries -- 3.1 Notation -- 3.2 Maximal Correlation -- 3.3 Fourier Analysis Basics -- 3.4 Markov Operator -- 3.5 Efron-Stein Decomposition -- 3.6 Imported Theorems.
4 Characterization of SNIS from Arbitrary Sources.
Record Nr. UNINA-9910637739203321
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Theory of cryptography : 20th international conference, TCC 2022, Chicago, IL, USA, November 7-10, 2022, proceedings, Part I / / edited by Eike Kiltz and Vinod Vaikuntanathan
Theory of cryptography : 20th international conference, TCC 2022, Chicago, IL, USA, November 7-10, 2022, proceedings, Part I / / edited by Eike Kiltz and Vinod Vaikuntanathan
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (748 pages)
Disciplina 652.8
Collana Lecture Notes in Computer Science
Soggetto topico Cryptography
Data encryption (Computer science)
ISBN 3-031-22318-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents - Part I -- Contents - Part II -- Contents - Part III -- Post-quantum Cryptography -- Post-quantum Insecurity from LWE -- 1 Introduction -- 1.1 Our Results -- 1.2 Related Work -- 2 Technical Overview -- 3 Open Problems -- 4 Preliminaries -- 4.1 Interactive Proofs of Quantumness -- 5 Deterministic Oracles with Quantum Advantage -- 5.1 Quantum Advantage for Unbounded-Classical Query Algorithms -- 5.2 Quantum Disclosure of Secrets -- 6 Counterexamples for Post-quantum Security -- 6.1 Counterexamples for Standard Cryptographic Primitives -- 6.2 Counterexamples for One-Time Primitives -- References -- Adaptive Versus Static Multi-oracle Algorithms, and Quantum Security of a Split-Key PRF -- 1 Introduction -- 2 Preliminaries -- 3 A General Adaptive-to-Static Reduction for Multi-oracle Algorithms -- 3.1 Our Result -- 3.2 The Technical Core -- 3.3 Wrapping up the Proof of Theorem 1 -- 3.4 Applications -- 4 Quantum Security of a Split-Key PRF -- 4.1 Hybrid Security and skPRFs -- 4.2 Quantum-Security of the skPRF -- 4.3 Proof of Theorem 2 -- References -- The Parallel Reversible Pebbling Game: Analyzing the Post-quantum Security of iMHFs -- 1 Introduction -- 1.1 Our Results -- 1.2 Technical Overview -- 1.3 Related Work -- 2 Parallel Reversible Pebbling Games -- 3 Reversible Pebbling Attacks and Applications on iMHFs -- 3.1 Warmup: Parallel Reversible Pebbling Attack on a Line Graph -- 3.2 Reversible Pebbling Attacks on (e,d)-Reducible DAGs -- 3.3 Reversible Pebbling Attacks Using an Induced Line Graph -- 4 Reversible Pebbling Attacks for Minimizing Cumulative Complexity -- 4.1 A Reversible Pebbling Attack -- References -- Quantum Rewinding for Many-Round Protocols -- 1 Introduction -- 1.1 Our Results -- 1.2 Related Work -- 1.3 Organization -- 2 Technical Overview -- 2.1 Quantum Rewinding.
2.2 Lattice-Based Bulletproofs -- 3 Preliminaries -- 3.1 Lattices -- 3.2 Quantum Information -- 4 Recursive Special Sound and Last-Round Collapsing Arguments -- 5 Quantum Tree-Extraction -- 5.1 Notation and Quantum Algorithms -- 5.2 Description of the Extractor -- 5.3 Correctness -- 6 Collapsing Hash Function Families -- 6.1 Definitions -- 6.2 Bounded Homomorphic Public-Key Encryption -- 6.3 A Fold-Collapsing Hash Function -- References -- Interactive Proofs -- Fiat-Shamir Transformation of Multi-round Interactive Proofs -- 1 Introduction -- 1.1 Background and State of the Art -- 1.2 Our Results -- 1.3 Related Work -- 1.4 Structure of the Paper -- 2 Preliminaries -- 2.1 (Non-)Interactive Proofs -- 2.2 Negative Hypergeometric Distribution -- 3 An Abstract Sampling Game -- 4 Fiat-Shamir Transformation of Sigma-Protocols -- 5 Refined Analysis of the Abstract Sampling Game -- 6 Fiat-Shamir Transformation of Multi-round Protocols -- 7 The Fiat-Shamir Transformation of Parallel Repetitions -- References -- Steganography-Free Zero-Knowledge -- 1 Introduction -- 1.1 Our Contribution -- 1.2 Applications -- 1.3 Our Techniques -- 1.4 Related Work -- 2 Preliminaries -- 3 Defining Steganography-Freeness -- 3.1 Steganography-Free Zero-Knowledge -- 4 A Steganography-Free ZK Protocol -- 4.1 Our Protocol -- 4.2 Analysis -- References -- Vector Commitments over Rings and Compressed -Protocols -- 1 Introduction -- 1.1 Our Contribution -- 1.2 Related Work -- 2 Technical Overview -- 3 Preliminaries -- 3.1 Vector Commitments -- 3.2 Interactive Proofs -- 4 Vector Commitments over Zm -- 4.1 Vector Commitments from Single-Value Commitments -- 4.2 Single-Value Commitments via Commitment Friendly Groups -- 4.3 Single-Value Commitment Schemes for Even m -- 5 Compressed -Protocol -- 5.1 Vector Commitments over Ring Extensions -- 5.2 Standard -Protocol.
5.3 Compression Mechanism -- 5.4 Compressed -Protocol -- 6 An Application: Verifiable Computation on Encrypted Data with Context-Hiding -- References -- Universally Composable -protocols in the Global Random-Oracle Model -- 1 Introduction -- 2 Preliminaries -- 2.1 -protocols, Revisited -- 2.2 Straight-Line Compilers -- 2.3 OR-Protocols -- 3 Properties of GUC NIZKPoK -- 3.1 GroRO and GrpoRO, Revisited -- 3.2 The NIZKPoK Ideal Functionality -- 3.3 The CRS Ideal Functionality -- 3.4 GUC Security Definitions -- 3.5 GUC NIZKPoK are Complete, NIM-SHVZK, and NI-SSS -- 4 GUC NIZKPoK in the Programmable Global ROM -- 5 GUC NIZKPoK in the Observable Global ROM -- 5.1 Generating a CRS that Plays Nice with -protocols -- 5.2 GUC Compiler -- 5.3 Realizing FNIZK in the GRO-FCRS-hybrid Model -- 6 Constructions via the Randomized Fischlin Transform -- 6.1 The Randomized Fischlin Transform, Revisited -- 6.2 Efficient, GUC NIZKPoK in the GrpoRO-hybrid Model -- 6.3 Efficient, GUC NIZKPoK in the GroRO-FCRS-hybrid Model -- References -- Quantum Cryptography -- Pseudorandom (Function-Like) Quantum State Generators: New Definitions and Applications -- 1 Introduction -- 1.1 Our Results -- 1.2 Threshold for Computational Assumptions -- 1.3 Cryptographic Applications with Classical Communication -- 2 Preliminaries -- 2.1 Distance Metrics and Matrix Norms -- 2.2 Quantum Algorithms -- 2.3 Pseudorandomness Notions -- 3 Adaptive Security -- 3.1 Classical Access -- 3.2 Quantum Access -- 4 On the Necessity of Computational Assumptions -- 5 Tomography with Verification -- 5.1 Correctness Notions for Verifiable Tomography -- 5.2 Verifiable Tomography Procedures -- 6 Applications -- 6.1 Commitment Scheme -- References -- Candidate Trapdoor Claw-Free Functions from Group Actions with Applications to Quantum Protocols -- 1 Introduction -- 1.1 Our Results -- 1.2 Technical Overview.
2 Preliminaries -- 2.1 Quantum Information -- 2.2 Cryptographic Group Actions and Extended LHS Assumption -- 3 Weak Trapdoor Claw-Free Functions -- 3.1 XOR Lemmas for Adaptive Hardcore Bits -- 4 wTCF from Extended LHS Assumption -- 5 Computational Test of Qubit -- 5.1 Definition -- 5.2 Protocol -- 5.3 Analysis -- References -- Collusion Resistant Copy-Protection for Watermarkable Functionalities -- 1 Introduction -- 1.1 Our Results -- 1.2 Related Works -- 1.3 Technical Overview -- 1.4 Discussions and Open Problems -- 1.5 Organization -- 2 Preliminaries -- 2.1 Coset States -- 2.2 Measure Success Probabilities of Quantum Adversaries: Projective/Threshold Implementation -- 3 Collusion Resistant Unclonable Decryption -- 3.1 Definitions -- 3.2 Construction -- 3.3 Proof of Anti-Piracy -- References -- Secret-Sharing and Applications -- On Secret Sharing, Randomness, and Random-less Reductions for Secret Sharing -- 1 Introduction -- 1.1 Our Results -- 1.2 Related Work -- 1.3 Technical Overview -- 1.4 Open Questions -- 2 Preliminaries -- 2.1 Notation -- 2.2 Probability Theory -- 2.3 Amplifying Leakage-Resilience -- 3 Randomness Extraction from Leakage-Resilient Secret Sharing Schemes -- 3.1 The Main Result -- 3.2 Efficient Leakage-Resilient Secret Sharing Requires Efficiently Extractable Randomness -- 3.3 An Extension to the Setting of Computational Security -- 4 Random-Less Reductions for Secret Sharing -- 4.1 Distribution Designs from Partial Steiner Systems -- A Proof of Lemma3 -- References -- Leakage-resilient Linear Secret-sharing Against Arbitrary Bounded-size Leakage Family -- 1 Introduction -- 1.1 Our Contribution -- 1.2 Prior Relevant Works -- 2 Technical Overview -- 3 Preliminaries -- 3.1 Matrices -- 3.2 Codes and Linear Secret-sharing Schemes -- 3.3 Joint Leakage-resilience of Secret-sharing Scheme -- 3.4 Fourier Analysis.
4 Leakage-resilience of Fully Random Code -- 5 Leakage-resilience of Shamir Secret-sharing Schemes with Random Evaluation Places -- 6 Leakage-resilience of Partially Random Code -- References -- Asymptotically Free Broadcast in Constant Expected Time via Packed VSS -- 1 Introduction -- 1.1 Our Results -- 1.2 Applications and Discussions -- 1.3 Related Work -- 2 Technical Overview -- 2.1 Improved Broadcast in Constant Expected Rounds -- 2.2 Packed Verifiable Secret Sharing -- 2.3 Optimal Gradecast -- 3 Preliminaries -- 3.1 Bivariate Polynomials -- 3.2 Finding (n,t)-STAR -- 4 Packed Verifiable Secret Sharing -- 5 Balanced Gradecast -- 5.1 The Gradecast Protocol -- 5.2 Making the Protocol Balanced -- 6 Multi-moderated Packed Secret Sharing -- 6.1 Reconstruction -- 7 Oblivious Leader Election -- 8 Broadcast -- 8.1 Byzantine Agreement -- 8.2 Broadcast and Parallel-broadcast -- References -- Succinct Proofs -- On Black-Box Constructions of Time and Space Efficient Sublinear Arguments from Symmetric-Key Primitives -- 1 Introduction -- 1.1 Our Results -- 1.2 Technical Overview -- 1.3 A Comparison with Related Work -- 2 Preliminaries -- 2.1 Circuit Notations -- 2.2 Zero-Knowledge Arguments -- 2.3 Random-Access Machines (RAM) -- 2.4 Succinct Matrix -- 3 Lower Bound for Space-Efficient Encoding Schemes -- 3.1 Interpreting the Lower Bound in the Context of Proof Systems -- 3.2 Warm Up: A Simple Lower Bound -- 3.3 Lower Bound for Multi-pass Space-Efficient Encoding Schemes -- 4 Main Construction -- 5 Space-Efficient Affine Code Testing for Interleaved Reed Solomon Codes -- References -- A Toolbox for Barriers on Interactive Oracle Proofs -- 1 Introduction -- 1.1 Our Results -- 1.2 Related Work -- 2 Techniques -- 2.1 Tools for Length and Round Reduction -- 2.2 Tools for Improving Completeness -- 2.3 Tools for Derandomization.
2.4 Deriving Our Results Using the Tools.
Record Nr. UNINA-9910637736503321
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Theory of cryptography : 20th international conference, TCC 2022, Chicago, IL, USA, November 7-10, 2022, proceedings, Part II / / edited by Eike Kiltz and Vinod Vaikuntanathan
Theory of cryptography : 20th international conference, TCC 2022, Chicago, IL, USA, November 7-10, 2022, proceedings, Part II / / edited by Eike Kiltz and Vinod Vaikuntanathan
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (813 pages)
Disciplina 652.8
Collana Lecture Notes in Computer Science
Soggetto topico Cryptography
Data encryption (Computer science)
ISBN 3-031-22365-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents - Part II -- Encryption -- Forward-Secure Encryption with Fast Forwarding -- 1 Introduction -- 1.1 Basic Solutions and a New Dimension -- 1.2 Our Contributions -- 1.3 Related Work -- 2 Preliminaries -- 3 Fast-Forwarding in the Bulletin Board Model -- 3.1 Bulletin Board -- 3.2 Fast-Forwardable Stream Ciphers -- 3.3 Fast-Forwardable Updatable Public-Key Encryption -- 4 Constructing a Fast-Forwardable PRNG -- 4.1 The Basic Construction -- 4.2 Supporting an Unbounded Number of Epochs -- 5 Fast-Forwardable Updatable Public-Key Encryption -- 5.1 Update-Homomorphic UPKE -- 5.2 Update Graphs -- 5.3 A Generic Construction -- 6 Conclusions and Open Problems -- References -- Rate-1 Incompressible Encryption from Standard Assumptions -- 1 Introduction -- 1.1 Our Results -- 1.2 Comparison with Previous Work -- 2 Technical Overview -- 2.1 The Scheme of GWZ -- 2.2 The Big Picture -- 2.3 Rate-1 Incompressible Symmetric-Key Encryption -- 2.4 From Symmetric-Key to Public-Key Incompressible Encryption via Hash Proof Systems -- 2.5 Extension to CCA Security -- 3 Preliminaries -- 3.1 Decisional Diffie-Hellman Assumption -- 3.2 Public-Key Encryption -- 3.3 HILL-Entropic Encodings -- 4 Incompressible Symmetric-Key Encryption -- 4.1 Definition -- 4.2 Construction -- 5 Programmable Hash Proof Systems -- 5.1 Definitions -- 5.2 Programmable Hash Proof System from DDH -- 5.3 2-Smooth Hash Proof System from DDH -- 6 Incompressible PKE from Incompressible SKE and HPS -- 6.1 CCA Incompressible Encryption -- 6.2 Construction -- References -- Achievable CCA2 Relaxation for Homomorphic Encryption -- 1 Introduction -- 2 Preliminaries -- 3 A Sufficient and Achievable Relaxation of CCA2 -- 3.1 funcCPA-Security: A Sufficient Relaxation of CCA2 -- 3.2 Sanitized HE Schemes are funcCPA-Secure -- 3.3 funcCPA Security of leveled HE Schemes.
3.4 Barriers on Proving funcCPA for Existing HE Schemes -- 4 CPA Insufficiency Against Malicious Adversaries -- 5 CPA Implies Privacy Against Semi-honest Adversaries -- 6 Conclusions -- A Proof of Lemma 2 -- References -- Multi-party Computation I -- Round-Optimal Honest-Majority MPC in Minicrypt and with Everlasting Security -- 1 Introduction -- 1.1 Our Contribution -- 2 Technical Overview -- 2.1 Main Theorem -- 2.2 Strong Honest-Majority MPC with Everlasting Security from OWF -- References -- Sublinear Secure Computation from New Assumptions -- 1 Introduction -- 1.1 Our Results -- 2 Technical Overview -- 2.1 Sublinear 2PC for Layered Circuits from Decomposable Batch OT -- 2.2 Polylogarithmic PIR from CDH -- 3 Sublinear Computation for loglog-Depth Circuits -- 3.1 Decomposable Two-Round Batch Oblivious Transfer -- 3.2 Instantiation Under QR +LPN, Adapted from ch5EC:BBDP22 -- 3.3 Bounded Query Repetitions -- 3.4 Two-Round Batch SPIR with Correlated Queries -- 3.5 Sublinear Computation of loglog-Depth Circuits from corrSPIR -- 3.6 Extension to Layered Circuits -- 4 Polylogarithmic PIR from CDH -- 4.1 Laconic Private Set Intersection -- 4.2 From Laconic PSI to Half-PIR -- 4.3 From Polylogarithmic Half-PIR to Polylogarithmic PIR -- References -- How to Obfuscate MPC Inputs -- 1 Introduction -- 1.1 Overview of Our Results -- 1.2 Related Work -- 2 Preliminaries -- 2.1 Idealized Models -- 2.2 Obfuscation -- 3 Defining io2PC -- 3.1 Simulation Rate -- 3.2 Server Compromise and Offline Evaluation -- 3.3 Preventing Precomputation -- 4 io2PC for Random-Oracle-Model Obfuscation -- 4.1 Oblivious PRF -- 4.2 io2PC Protocol -- 5 io2PC for Generic-Group Obfuscations -- 5.1 Generic Groups -- 5.2 Personalized Generic Group -- 5.3 Protocol for Personalized Generic Groups -- 5.4 io2PC Protocol for Generic-Group Obfuscation -- 6 Compatible Obfuscations.
6.1 Point Functions -- 6.2 Hyperplane Membership -- References -- Statistical Security in Two-Party Computation Revisited -- 1 Introduction -- 1.1 Our Contributions -- 2 Technical Overview -- 2.1 One-Sided Statistical Two-Party Computation Protocol -- 2.2 Constructing Our Ingredients from eOT -- 3 Preliminaries -- 3.1 Notations -- 3.2 Oblivious Transfer Protocols -- 3.3 Additional Preliminaries -- 4 Three Round Oblivious Transfer Protocols -- 4.1 Statistically Receiver Private Indistinguishability-Based OT -- 4.2 Three Round Statistically Sender Private OT -- 5 One-Sided Statistically Secure 2PC Against Explainable Parties -- 5.1 Protocol exp -- 5.2 Two Round Statistically Hiding Commitment -- 6 One-Sided Statistically Secure 2PC Against Malicious Corruptions -- 6.1 Conditional Disclosure of Secrets in the Preprocessing Model -- 6.2 Protocol mal -- 7 Instantiations of eOT -- References -- Protocols: Key Agreement and Commitments -- On the Worst-Case Inefficiency of CGKA -- 1 Introduction -- 1.1 Our Results -- 1.2 Compact Key Exchange -- 1.3 Standard Security of Continuous Group Key Agreement -- 1.4 Equivalence of CKE and CGKA Worst-Case Communication Complexity -- 1.5 Black-Box Compact Key Exchange Lower Bound -- 1.6 No Single Optimal CGKA Protocol Exists -- 1.7 Lessons Learned for Practice -- 2 Definitions -- 2.1 Continuous Group Key Agreement -- 2.2 Compact Key Exchange -- 3 From CGKA to CKE Tightly -- 3.1 Embedding CGKA Ciphertexts in CKE Ciphertexts -- 4 CKE Lower Bound from PKE -- 4.1 Proof Outline -- 4.2 Attack for (CRSGeng, Initg, Comme, Derived) -- 5 No Single Optimal CGKA Protocol Exists -- 5.1 Bad Sequences of Operations -- 5.2 Suboptimality of All CGKA Protocols -- References -- Adaptive Multiparty NIKE -- 1 Introduction -- 1.1 Prior Work and Motivation -- 1.2 Technical Challenges -- 1.3 Result Summary -- 1.4 Technical Overview.
1.5 Organization -- 2 Preliminaries -- 2.1 Multiparty NIKE -- 2.2 Constrained PRFs -- 3 Enhancing Multi-party NIKE -- 3.1 Achieving Adversarial Correctness -- 3.2 Removing the CRS -- 3.3 Adding Shared Key Queries -- 3.4 Putting It All Together -- 4 The Equivalence of Multiparty NIKE and 1-SF-PRF -- 4.1 From 1-SF-PRF to Special Constrained PRF -- 4.2 From Special Constrained PRF to Multiparty NIKE with Setup -- 5 Construction of 1-SF-PRFs -- 5.1 Construction -- 5.2 Security Proof -- References -- On the Impossibility of Algebraic Vector Commitments in Pairing-Free Groups -- 1 Introduction -- 1.1 Our Results -- 1.2 Our Techniques -- 1.3 Interpretation of Our Impossibility and Further Implications -- 1.4 Related Work -- 1.5 Organization of the Paper -- 2 Preliminaries -- 2.1 Vector Commitments -- 2.2 Digital Signatures -- 3 Algebraic Vector Commitments -- 3.1 Generic Transformation from VCs to Signatures -- 3.2 -Unforgeability -- 4 Algebraic Signatures -- 4.1 Attack to Schemes with Strictly Linear Verification -- 4.2 Attack to Schemes with Generic Verification -- 5 Conclusions -- 5.1 Impossibility of Algebraic Vector Commitments -- 5.2 Impossibility of Algebraic Signatures -- References -- Four-Round Black-Box Non-malleable Schemes from One-Way Permutations -- 1 Introduction -- 1.1 Our Contributions -- 2 Overview of Techniques -- 2.1 Our NMZKC Protocol and New Commitment Schemes -- 2.2 4-Round Non-malleable Commitment nmc -- 3 Preliminaries -- 3.1 Commitment Schemes -- 3.2 Non-malleable Commitments -- 3.3 -Commitments -- 3.4 Adaptive-Input SHVZK -- 3.5 One-of-Two Binding Commitments -- 3.6 MPC Definitions -- 3.7 Verifiable Secret Sharing (VSS) -- 4 Non-malleable HVZK with Respect to Commitment -- 5 Our Delayed-Input MPC-in-the-Head Protocol AI -- 6 The Building Blocks of the 4-Round Black-Box Non-malleable Commitment Scheme.
6.1 Commitment from Verifiable Secret Sharing -- 6.2 Commit-and-Prove -- 6.3 The 4-Round Non-malleable Commitment Scheme of ch11FOCS:GRRV14 -- 7 Our 4-Round Black-Box Non-malleable Commitment Scheme -- 7.1 Formal Description of nmc = ((Snmc , Rnmc ), Decnmc ) -- 8 Comparison with Previous Non-black-box Approaches to Four-Round Non-malleable Commitments -- References -- Theory I: Sampling and Friends -- A Tight Computational Indistinguishability Bound for Product Distributions -- 1 Introduction -- 1.1 Related Work -- 1.2 Organization -- 2 Definitions -- 2.1 Notation -- 3 The Non-uniform Bounds and Tightness -- 3.1 The N-Fold Case -- 3.2 Tightness -- 4 The Uniform Variant -- 5 Applications -- 6 Open Questions -- References -- Secure Sampling with Sublinear Communication -- 1 Introduction -- 1.1 Our Work -- 1.2 Technical Overview -- 1.3 Related Work -- 2 Two-Party L1 Sampling -- 2.1 A Toy Protocol Towards Securely Realizing FL1 -- 2.2 Secure L1 Sampling Protocol -- 3 Two Party L2 Sampling -- 3.1 A Non-private L2 Sampling Protocol with (1) Communication -- 3.2 Secure L2 Sampling from FHE -- 3.3 A Non-private Lp Sampling Protocol with (1) Communication -- 4 Two-Party Product Sampling -- 4.1 Impossibility of Sublinear Product Sampling -- 4.2 Product Sampling While Leaking at Most the Inner Product -- 5 Product Sampling in Constant Rounds -- 5.1 Secure Approximation of the Inner Product -- 5.2 Constant-Round Protocol for Product Sampling -- References -- Secure Non-interactive Simulation from Arbitrary Joint Distributions -- 1 Introduction -- 2 Overview of Our Contributions -- 2.1 Overview of Our Results -- 2.2 Overview of Our Technical Contributions -- 3 Preliminaries -- 3.1 Notation -- 3.2 Maximal Correlation -- 3.3 Fourier Analysis Basics -- 3.4 Markov Operator -- 3.5 Efron-Stein Decomposition -- 3.6 Imported Theorems.
4 Characterization of SNIS from Arbitrary Sources.
Record Nr. UNISA-996503468703316
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Theory of cryptography : 20th international conference, TCC 2022, Chicago, IL, USA, November 7-10, 2022, proceedings, Part III / / edited by Eike Kiltz and Vinod Vaikuntanathan
Theory of cryptography : 20th international conference, TCC 2022, Chicago, IL, USA, November 7-10, 2022, proceedings, Part III / / edited by Eike Kiltz and Vinod Vaikuntanathan
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (254 pages)
Disciplina 652.8
Collana Lecture Notes in Computer Science
Soggetto topico Cryptography
Data encryption (Computer science)
ISBN 3-031-22368-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents - Part III -- ORAM, OT and PIR -- Verifiable Private Information Retrieval -- 1 Introduction -- 1.1 Our Contribution -- 1.2 On the Round Complexity of vPIR -- 1.3 Open Questions -- 2 Technical Overview -- 2.1 vPIR for Local Properties -- 2.2 vPIR for Global Properties -- 3 Preliminaries -- 3.1 Private Information Retrieval -- 3.2 Batch Arguments -- 4 Verifiable PIR -- 4.1 Simulation Security -- 4.2 Local Security -- 5 From Batch Arguments to 1-Local vPIR -- 6 From 1-Local vPIR to vPIR with Constant Locality -- 7 From Local vPIR to Simulation Secure vPIR -- References -- Random-Index Oblivious RAM -- 1 Introduction -- 1.1 Random-Index ORAM -- 1.2 Applications -- 1.3 Our Contributions -- 2 Definitions -- 2.1 RORAM Security -- 2.2 Batch RORAM -- 3 Hierarchical RORAM -- 3.1 Protocol 1 - Future Randomness -- 3.2 Protocol 2 - Randomness -- 4 Tree-Based RORAM -- 4.1 A Class of Tree-RORAM Schemes -- 4.2 The Scheme that We Analyze -- 4.3 Bounding the Prediction Probability -- 5 Discussion and Future Directions -- 5.1 Hybrid ORAM/RORAM Schemes -- 5.2 Refreshing Keys in Large-Scale MPC -- 5.3 Improved Schemes and Analysis -- 5.4 From RORAM to ORAM -- 5.5 Miscellaneous -- A Hierarchical-RORAM: More Details -- B Tree-RORAM: More Details -- B.1 Analysis of the Optimal Strategy -- C Non-independence for a Tree-RORAM Construction -- References -- On the Optimal Communication Complexity of Error-Correcting Multi-server PIR -- 1 Introduction -- 1.1 Our Results -- 1.2 Related Work -- 2 Technical Overview -- 2.1 Optimal Communication Complexity of Error-Correcting PIR -- 2.2 Instantiation of Our Transformation -- 3 Preliminaries -- 4 Private Information Retrieval (PIR) -- 4.1 Definitions -- 4.2 Robust PIR -- 4.3 Error-Correcting and Error-Detecting PIR -- 5 Transformation from Regular to Error-Detecting PIR.
5.1 Basic Transformation -- 5.2 General Transformation -- 6 Transformation from Error-Detecting to Error-Correcting PIR -- 7 Optimal Communication Complexity of Error-Correcting PIR -- 7.1 The Case of Perfect Error Correction -- 7.2 The Case of Statistical Error Correction -- 8 Instantiation of Our Transformation -- 8.1 Statistical Error-Correcting PIR Based on Homomorphic MAC -- A Definitions -- B Proof of Theorem2 -- C Proof of Lemma1 -- D Proof of Theorem3 -- E Proof of Theorem5 -- References -- .28em plus .1em minus .1emOblivious-Transfer Complexity of Noisy Coin-Toss via Secure Zero Communication Reductions -- 1 Introduction -- 2 Technical Overview -- 3 Preliminaries -- 3.1 Zero-Communication Secure Reductions -- 4 Balanced Embedding -- 5 SZCR from MPC Protocols -- A Basic Constructions -- A.1 Balanced Embedding from Truth Table -- A.2 Constructing Balanced Embedding from Circuit -- References -- Theory II -- One-Time Programs from Commodity Hardware -- 1 Introduction -- 1.1 Our Results -- 2 Technical Overview -- 2.1 Basic Protocol -- 2.2 Reducing the Number of Lockboxes -- 2.3 Reducing Lockboxes Using Laconic OT -- 2.4 Counter Lockboxes with Multiple Password Attempts -- 2.5 Related Work -- 3 Preliminaries -- 3.1 One-Time Programs -- 4 Counter Lockboxes -- 5 Leaky Batch-OT -- 5.1 Definition -- 5.2 Construction -- 6 Robust Garbling -- 6.1 Definitions -- 6.2 Construction -- 7 One-Time Program -- 8 Concrete Analysis -- 8.1 Number of Lockboxes -- 8.2 Instantiating Lockboxes -- 8.3 Applications -- References -- Universal Reductions: Reductions Relative to Stateful Oracles -- 1 Introduction -- 1.1 Universal Reductions in a Nut-shell -- 1.2 Formalizing Universal Reductions -- 1.3 On the Feasibility of Universal Reductions -- 1.4 Restricted Classes of Natures -- 1.5 Universal Reductions Imply Standard Reductions.
1.6 Conclusions, Related and Future Work -- 2 Overview of Techniques -- 2.1 The Dummy Lemma -- 2.2 Straightline Black-Box Reductions and Witness Indistinguishability -- 2.3 Impossibility of Hardness Amplification and Goldreich-Levin -- 2.4 Universal Reductions for Time-Evolving k-Window Natures, from Classical Non-adaptive Reductions -- 3 Defining Universal Reductions -- 3.1 Preliminaries -- 3.2 The Definition and Some Consequences -- References -- Permissionless Clock Synchronization with Public Setup -- 1 Introduction -- 1.1 Overview of Our Results -- 2 Model and Building Blocks -- 2.1 Imperfect Local Clocks -- 2.2 Other Core Functionalities -- 2.3 Dynamic Participation -- 3 The Clock Synchronization Protocol with Public Setup -- 3.1 Timekeeper Timestamps -- 3.2 2-for-1 Proofs of Work and Synchronization Beacons -- 3.3 Clock Synchronization Intervals and the Synchronization Procedure -- 3.4 The Target Recalculation Function -- 3.5 Newly Joining Parties -- 4 Protocol Analysis -- 4.1 Notation, Definitions and Preliminary Propositions -- 4.2 Protocol Parameters and Their Conditions -- 4.3 Typical Executions -- 4.4 Proof Roadmap -- A Glossary -- References -- Beyond Uber: Instantiating Generic Groups via PGGs -- 1 Introduction -- 1.1 Background -- 1.2 Our Approach -- 1.3 Applications of Pseudo-Generic Groups -- 1.4 Other Related Work and Discussions -- 1.5 Structure of the Paper -- 2 Preliminaries -- 3 Pseudo-Generic Groups -- 4 Generic Groups Are PGGs -- 5 From Simple to Algebraic Unpredictability: LDDs -- 6 Applications of PGGs -- 6.1 Uber Assumptions in PGGs -- 6.2 Building UCEs -- References -- Author Index.
Record Nr. UNISA-996503468503316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Theory of cryptography : 20th international conference, TCC 2022, Chicago, IL, USA, November 7-10, 2022, proceedings, Part III / / edited by Eike Kiltz and Vinod Vaikuntanathan
Theory of cryptography : 20th international conference, TCC 2022, Chicago, IL, USA, November 7-10, 2022, proceedings, Part III / / edited by Eike Kiltz and Vinod Vaikuntanathan
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (254 pages)
Disciplina 652.8
Collana Lecture Notes in Computer Science
Soggetto topico Cryptography
Data encryption (Computer science)
ISBN 3-031-22368-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents - Part III -- ORAM, OT and PIR -- Verifiable Private Information Retrieval -- 1 Introduction -- 1.1 Our Contribution -- 1.2 On the Round Complexity of vPIR -- 1.3 Open Questions -- 2 Technical Overview -- 2.1 vPIR for Local Properties -- 2.2 vPIR for Global Properties -- 3 Preliminaries -- 3.1 Private Information Retrieval -- 3.2 Batch Arguments -- 4 Verifiable PIR -- 4.1 Simulation Security -- 4.2 Local Security -- 5 From Batch Arguments to 1-Local vPIR -- 6 From 1-Local vPIR to vPIR with Constant Locality -- 7 From Local vPIR to Simulation Secure vPIR -- References -- Random-Index Oblivious RAM -- 1 Introduction -- 1.1 Random-Index ORAM -- 1.2 Applications -- 1.3 Our Contributions -- 2 Definitions -- 2.1 RORAM Security -- 2.2 Batch RORAM -- 3 Hierarchical RORAM -- 3.1 Protocol 1 - Future Randomness -- 3.2 Protocol 2 - Randomness -- 4 Tree-Based RORAM -- 4.1 A Class of Tree-RORAM Schemes -- 4.2 The Scheme that We Analyze -- 4.3 Bounding the Prediction Probability -- 5 Discussion and Future Directions -- 5.1 Hybrid ORAM/RORAM Schemes -- 5.2 Refreshing Keys in Large-Scale MPC -- 5.3 Improved Schemes and Analysis -- 5.4 From RORAM to ORAM -- 5.5 Miscellaneous -- A Hierarchical-RORAM: More Details -- B Tree-RORAM: More Details -- B.1 Analysis of the Optimal Strategy -- C Non-independence for a Tree-RORAM Construction -- References -- On the Optimal Communication Complexity of Error-Correcting Multi-server PIR -- 1 Introduction -- 1.1 Our Results -- 1.2 Related Work -- 2 Technical Overview -- 2.1 Optimal Communication Complexity of Error-Correcting PIR -- 2.2 Instantiation of Our Transformation -- 3 Preliminaries -- 4 Private Information Retrieval (PIR) -- 4.1 Definitions -- 4.2 Robust PIR -- 4.3 Error-Correcting and Error-Detecting PIR -- 5 Transformation from Regular to Error-Detecting PIR.
5.1 Basic Transformation -- 5.2 General Transformation -- 6 Transformation from Error-Detecting to Error-Correcting PIR -- 7 Optimal Communication Complexity of Error-Correcting PIR -- 7.1 The Case of Perfect Error Correction -- 7.2 The Case of Statistical Error Correction -- 8 Instantiation of Our Transformation -- 8.1 Statistical Error-Correcting PIR Based on Homomorphic MAC -- A Definitions -- B Proof of Theorem2 -- C Proof of Lemma1 -- D Proof of Theorem3 -- E Proof of Theorem5 -- References -- .28em plus .1em minus .1emOblivious-Transfer Complexity of Noisy Coin-Toss via Secure Zero Communication Reductions -- 1 Introduction -- 2 Technical Overview -- 3 Preliminaries -- 3.1 Zero-Communication Secure Reductions -- 4 Balanced Embedding -- 5 SZCR from MPC Protocols -- A Basic Constructions -- A.1 Balanced Embedding from Truth Table -- A.2 Constructing Balanced Embedding from Circuit -- References -- Theory II -- One-Time Programs from Commodity Hardware -- 1 Introduction -- 1.1 Our Results -- 2 Technical Overview -- 2.1 Basic Protocol -- 2.2 Reducing the Number of Lockboxes -- 2.3 Reducing Lockboxes Using Laconic OT -- 2.4 Counter Lockboxes with Multiple Password Attempts -- 2.5 Related Work -- 3 Preliminaries -- 3.1 One-Time Programs -- 4 Counter Lockboxes -- 5 Leaky Batch-OT -- 5.1 Definition -- 5.2 Construction -- 6 Robust Garbling -- 6.1 Definitions -- 6.2 Construction -- 7 One-Time Program -- 8 Concrete Analysis -- 8.1 Number of Lockboxes -- 8.2 Instantiating Lockboxes -- 8.3 Applications -- References -- Universal Reductions: Reductions Relative to Stateful Oracles -- 1 Introduction -- 1.1 Universal Reductions in a Nut-shell -- 1.2 Formalizing Universal Reductions -- 1.3 On the Feasibility of Universal Reductions -- 1.4 Restricted Classes of Natures -- 1.5 Universal Reductions Imply Standard Reductions.
1.6 Conclusions, Related and Future Work -- 2 Overview of Techniques -- 2.1 The Dummy Lemma -- 2.2 Straightline Black-Box Reductions and Witness Indistinguishability -- 2.3 Impossibility of Hardness Amplification and Goldreich-Levin -- 2.4 Universal Reductions for Time-Evolving k-Window Natures, from Classical Non-adaptive Reductions -- 3 Defining Universal Reductions -- 3.1 Preliminaries -- 3.2 The Definition and Some Consequences -- References -- Permissionless Clock Synchronization with Public Setup -- 1 Introduction -- 1.1 Overview of Our Results -- 2 Model and Building Blocks -- 2.1 Imperfect Local Clocks -- 2.2 Other Core Functionalities -- 2.3 Dynamic Participation -- 3 The Clock Synchronization Protocol with Public Setup -- 3.1 Timekeeper Timestamps -- 3.2 2-for-1 Proofs of Work and Synchronization Beacons -- 3.3 Clock Synchronization Intervals and the Synchronization Procedure -- 3.4 The Target Recalculation Function -- 3.5 Newly Joining Parties -- 4 Protocol Analysis -- 4.1 Notation, Definitions and Preliminary Propositions -- 4.2 Protocol Parameters and Their Conditions -- 4.3 Typical Executions -- 4.4 Proof Roadmap -- A Glossary -- References -- Beyond Uber: Instantiating Generic Groups via PGGs -- 1 Introduction -- 1.1 Background -- 1.2 Our Approach -- 1.3 Applications of Pseudo-Generic Groups -- 1.4 Other Related Work and Discussions -- 1.5 Structure of the Paper -- 2 Preliminaries -- 3 Pseudo-Generic Groups -- 4 Generic Groups Are PGGs -- 5 From Simple to Algebraic Unpredictability: LDDs -- 6 Applications of PGGs -- 6.1 Uber Assumptions in PGGs -- 6.2 Building UCEs -- References -- Author Index.
Record Nr. UNINA-9910637738003321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui