Fundamental optical design / / Michael J. Kidger
| Fundamental optical design / / Michael J. Kidger |
| Autore | Kidger Michael J |
| Pubbl/distr/stampa | Bellingham, Wash., : SPIE Press, c2002 |
| Descrizione fisica | 1 online resource (312 p.) |
| Disciplina | 535/.32 |
| Collana | SPIE Press monograph |
| Soggetto topico | Geometrical optics |
| ISBN |
1-61583-703-5
0-8194-7850-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Chapter 1. Geometrical optics -- Coordinate system and notation -- The rectilinear propagation of light -- Snell's law -- Fermat's principle -- Rays and wavefronts, the theorem of Malus and Dupin -- Stops and pupils -- Marginal and chief rays -- Entrance and exit pupils -- Field stops -- Surfaces -- Spheres -- Quadrics of revolution (paraboloids, ellipsoids, hyperboloids) -- Oblate ellipsoid -- The hyperbola -- Axicon -- References -- Chapter 2. Paraxial optics -- Paraxial rays -- The sign convention -- The paraxial region -- The cardinal points -- Principal points -- Nodal points -- Paraxial properties of a single surface -- Paraxial ray tracing -- Discussion of the use of paraxial ray trace equations -- The Lagrange invariant -- Transverse (lateral) magnification -- Afocal systems and angular magnification -- Newton's conjugate distance equation -- Further discussion of the cardinal points -- The combination of two lenses -- The thick lens -- System of several elements -- The refraction invariant, A -- Other expressions for the Lagrange invariant -- The eccentricity, E -- The determination of E -- References -- Chapter 3. Ray tracing -- Introduction -- A simple trigonometric method of tracing meridian rays -- The vector form of Snell's law -- Definition of direction cosines -- Ray tracing (algebraic method) -- Precision -- Calculation of wavefront aberration (optical path difference) -- Ray tracing through aspheric and toroidal surfaces -- Decentered and tilted surfaces -- Ray tracing at reflecting surfaces -- References.
Chapter 4. Aberrations -- The relationship between transverse and wavefront aberrations -- Ray aberration plots -- Spot diagrams -- Aberrations of centered optical systems -- First-order aberrations -- Defocus -- Lateral image shift -- The five monochromatic third-order (Seidel) aberrations -- Spherical aberration -- Coma -- Astigmatism and field curvature -- Distortion -- The finite conjugate case -- The infinite conjugate case -- The afocal case -- Effect of pupil aberrations and defocus on -- Distortion -- F-theta lenses -- Effect of a curved object on distortion -- Higher-order aberrations -- Balancing spherical aberration -- Balancing coma -- Balancing astigmatism and field curvature -- Balancing distortion -- Modulation transfer function (MTF) -- Theory -- The geometrical approximation -- Practical calculation -- The diffraction limit -- References -- Chapter 5. Chromatic aberration -- Variation of refractive index, dispersion -- Longitudinal chromatic aberration (axial color) of a thin lens -- The Abbe V-value -- Secondary spectrum -- Transverse chromatic aberration (lateral color) -- The Conrady method for calculation of chromatic aberration -- Chromatic variation of aberrations -- References. Chapter 6. Seidel aberrations -- Introduction -- Seidel surface contributions -- Spherical aberration -- Off-axis Seidel aberrations -- Alternative formula for distortion -- Aberrations of a plano-convex singlet -- First-order axial color and lateral color -- Summary of the Seidel surface coefficients -- A numerical example -- Stop-shift effects -- Derivation of the Seidel stop-shift equations -- Dependence of the Seidel aberrations on surface curvature -- The aplanatic surface -- An example: the classical oil-immersion microscope -- Objective -- Zero Seidel conditions -- "Undercorrected" and "overcorrected" aberrations -- Seidel aberrations of spherical mirrors -- Seidel aberration relationships -- Wavefront aberrations -- Transverse ray aberrations -- The Petzval sum and the Petzval surface -- The Petzval surface and astigmatic image surfaces -- Pupil aberrations -- Conjugate-shift effects -- References. Chapter 7. Principles of lens design -- Thin lenses -- Thin lens at the stop -- Spherical aberration -- Coma -- Astigmatism -- Field curvature -- Distortion -- Axial color -- Lateral color -- Discussion of the thin-lens Seidel aberrations -- Spherical aberration -- Bending for minimum spherical aberration -- Effect of refractive index -- Effect of change of conjugates -- Correction of spherical aberration with two positive -- Lenses -- Correction of spherical aberration with positive and -- Negative lenses -- Seidel aberrations of thin lenses not at the stop -- Correction of coma -- Correction of astigmatism -- Correction of field curvature -- Different refractive indices -- Separated lenses -- Thick meniscus lens -- Reduction of aberrations by splitting lenses into two -- Seidel aberrations of a thin lens that is not at the stop -- Correction of axial and lateral color -- Shape-dependent and shape-independent aberrations -- Aspheric surfaces -- Third-order off-axis aberrations of an aspheric plate -- Chromatic effects -- The sine condition -- Sine condition in the finite conjugate case -- The sine condition with the object at infinity -- The sine condition for the afocal case -- Other design strategies -- Monocentric systems -- Use of front-to-back symmetry -- References. Chapter 8. Achromatic doublet objectives -- Seidel analysis -- Correction of chromatic aberration -- Astigmatism and field curvature -- Comparison with the actual aberrations of a doublet -- Correcting both Petzval sum and axial color in doublets -- Possibilities of aberration correction in doublets -- The cemented doublet -- Optimization of cemented doublets -- Crown-first doublet -- Flint-first doublet -- The split doublet -- The split Fraunhofer doublet -- The split Gauss doublet -- General limitations of doublets -- Chapter 9. Petzval lenses and telephoto objectives -- Seidel analysis -- Calculation of predicted transverse aberrations from Seidel -- Coefficients -- Optimization -- Examples -- Simple Petzval lens with two doublets -- Petzval lens with curved image surface -- Petzval lens with field flattener -- The telephoto lens -- Chapter 10. Triplets -- Seidel theory -- Example of an optimized triplet -- Glass choice -- Vignetting. Chapter 11. Eyepieces and afocal systems -- Eyepieces, design considerations -- Specification of an eyepiece -- Focal length -- Field angle -- Pupil diameter -- Exit pupil position ("eye relief") -- Aberration considerations -- Prism aberrations -- Pupil spherical aberration -- Distortion -- Field curvature -- Special factors in optimization -- General comments on eyepieces -- Simple eyepiece types -- The Ramsden eyepiece -- The achromatized Ramsden, or Kellner, eyepiece -- The Ploessl eyepiece -- The Erfle eyepiece -- Afocal systems for the visible waveband -- Simple example of a complete telescopic system -- More complex example of a telescopic system -- Galilean telescopes -- Magnifiers -- References -- Chapter 12. Thermal imaging lenses -- Photon detection -- 8- to 13- um waveband -- 3- to 5- um waveband -- Single-material lenses -- Single germanium lens -- Germanium doublets -- Plus-minus germanium doublet solution -- Plus-plus germanium doublet solution -- Germanium Petzval lens -- Germanium triplet -- Multiple-material lenses -- Infrared afocal systems -- The objective -- The eyepiece -- Optimization and analysis -- Other aspects of thermal imaging -- Narcissus effect -- Thermal effects -- Special optical surfaces -- References. Chapter 13. Catadioptric systems -- General considerations -- Reminder of Seidel theory, spherical aberration, S1 -- Correction of field curvature, S4 -- General topics relating to computations with catadioptric systems -- Baffles -- Simple examples -- Cassegrain telescope -- Field corrector for a Cassegrain telescope -- Coma corrector for a paraboloidal mirror -- Field corrector for a paraboloidal mirror -- The Ritchey-Chrétien telescope -- Field corrector for a Ritchey-Chrétien telescope -- Field corrector for a hyperbolic mirror -- Schmidt camera -- The achromatized Schmidt camera -- The field-flattened Schmidt camera -- The Maksutov-Bouwers Cassegrain system -- A simple Mangin mirror system by Wiedemann -- More complex examples -- Canzek Mangin system -- Mirror telephoto lens -- References -- Index. |
| Record Nr. | UNINA-9911004818803321 |
Kidger Michael J
|
||
| Bellingham, Wash., : SPIE Press, c2002 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Intermediate optical design / / Michael J. Kidger
| Intermediate optical design / / Michael J. Kidger |
| Autore | Kidger Michael J |
| Pubbl/distr/stampa | Bellingham, Wash., : SPIE Optical Engineering Press, c2004 |
| Descrizione fisica | 1 online resource (250 p.) |
| Disciplina | 535/.32 |
| Collana | SPIE monograph |
| Soggetto topico | Geometrical optics |
| ISBN |
1-61583-704-3
0-8194-7831-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Chapter 1. Optimization -- Special characteristics of lens design as an optimization problem -- The nature of the merit function -- The Strehl ratio -- MTF optimization -- General comments -- Comparison with the optical thin-film design problem -- Nonlinearity of the aberrations -- Changes needed to reduce high-order aberrations -- A method of visualizing the problem of optimization in lens design -- Theory of damped least squares (Levenberg-Marquardt) -- Some details of damped least squares as used in lens design -- Paraxial (first-order) properties -- Seidel and Buchdahl coefficients -- Transverse ray or wavefront aberrations -- Aberration balancing and choice of weighting factors -- Damping -- Control of physical constraints -- Control of glass boundary conditions -- Solves -- Lagrange multipliers -- Some reasons for the success of the DLS method -- Experiments with optimization programs -- Effect of changing the damping factor -- Effect of scaling the parameter changes -- An optimization example -- References.
Chapter 2. Buchdahl aberrations -- Third-order coefficients -- Fifth-order coefficients -- Comparison with H.H. Hopkins notation -- Examples -- Double Gauss -- Shafer lens with zero third- and fifth-order aberrations -- References -- Chapter 3. Synthesis of new lens designs -- Choice of a starting point -- Modification of an existing design -- Purchase of a competing lens -- Analytic solutions -- Nonanalytic synthesis of new design forms -- Examples -- A unit magnification telecentric doublet pair -- A simple zoom lens -- The use of catalog components -- Singlets -- Doublets and triplets -- Meniscus singlets -- Field flatteners -- Cemented triplets -- References -- Chapter 4. Lenses for 35-mm cameras -- The triplet -- The tessar -- The double-Gauss (planar-type) -- The Sonnar -- Wide-angle lenses for rangefinder cameras (Zeiss Biogon) -- Wide-angle lens for rangefinder camera (Schneider Super-Angulon) -- Wide-angle lenses for SLR cameras -- Telephoto lens -- Long-focus telephoto lens -- Lens for compact point-and-shoot camera -- Single lens for disposable cameras -- References. Chapter 5. Secondary spectrum and apochromats -- Apochromatic doublets -- Apochromatic triplets -- Petzval lenses -- Double-Gauss lenses -- Telephoto lenses -- Zoom lenses -- Microscope objectives -- Secondary spectrum correction with normal glasses -- Liquids -- Diffractive optics -- McCarthy-Wynne principle -- Schupmann principle -- Transverse secondary spectrum -- References -- Chapter 6. Lenses for laser applications -- Gaussian beams -- Laser beam expanders -- Two-lens beam expanders -- Three-lens beam expanders -- F-Theta lenses -- Lenses for optical disks -- Laser diode collimators -- References -- Chapter 7. Microscope objectives -- Classical microscope objectives -- Flat-field microscope objectives -- Oil-immersion objectives -- References -- Chapter 8. Microlithographic Projection Optics -- Unit-magnification zero-power monocentric systems -- Dyson 1x relay -- Offner 1x relay -- Wynne-Dyson 1x relay -- Wynne-Offner 1x relay -- Reduction lenses -- Catadioptric reduction systems -- Catoptric reduction systems -- References. Chapter 9. Zoom lenses -- General principles -- Control of chromatic aberration -- Field curvature -- Minimization of movements -- Two-component zooms -- Minus-plus plastic disposable zoom -- Plus-minus plastic disposable zoom -- A typical minus-plus zoom -- A typical plus-minus zoom -- Three-component zooms -- Four-component zooms -- Zoom relays -- Zoom telescopes -- Zoom modules -- References -- Chapter 10. Decentered and asymmetric systems -- General properties of decentered systems -- Coordinate systems -- Interpretation of results -- New-axis surface -- Toroids -- Offset surfaces (or off-axis surfaces) -- Convention for mirrors -- Kutter system -- Single parabolic mirror -- Alpha rotations -- Beta rotations -- Alpha and beta rotations -- Scanning systems -- The active side of a surface -- X-ray telescopes -- WOLTER2 example -- WOLTER1 example -- Chapter 11. Design for manufacturability -- Tolerancing -- Simplicity of design -- Air spaces -- Glass components -- Glass choice -- Mirror surfaces -- Redesign for actual melt data -- Use of existing tools and test plates -- Selective assembly and adjustment after assembly -- General points -- References -- Index. |
| Record Nr. | UNINA-9911004822203321 |
Kidger Michael J
|
||
| Bellingham, Wash., : SPIE Optical Engineering Press, c2004 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||