Discovery Science [[electronic resource] ] : 20th International Conference, DS 2017, Kyoto, Japan, October 15–17, 2017, Proceedings / / edited by Akihiro Yamamoto, Takuya Kida, Takeaki Uno, Tetsuji Kuboyama |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (XV, 357 p. 90 illus.) |
Disciplina | 501 |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Artificial intelligence
Data mining Application software Artificial Intelligence Data Mining and Knowledge Discovery Information Systems Applications (incl. Internet) Computer Appl. in Social and Behavioral Sciences |
ISBN | 3-319-67786-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Abstracts of Invited Talks -- Machine Learning from Weak Supervision - Towards Accurate Classification with Low Labeling Costs -- Automatic Design of Functional Molecules and Materials -- Contents -- Online Learning -- Context-Based Abrupt Change Detection and Adaptation for Categorical Data Streams -- 1 Introduction -- 2 Background -- 2.1 DILCA Context-Based Similarity Measure -- 2.2 CDCStream Categorical Drift Detector -- 3 FG-CDCStream Algorithm -- 4 Experimentation -- 4.1 Results -- 4.2 Discussion -- 5 Conclusion -- References -- A New Adaptive Learning Algorithm and Its Application to Online Malware Detection -- 1 Introduction -- 2 Related Work -- 2.1 Batch Learning in Malware Detection -- 2.2 Online Learning in Malware Detection -- 3 Problem Statement -- 4 Methodology -- 4.1 Batch Learning -- LR -- 4.2 Online Learning -- FTRL-DP -- 5 Data Collection -- 5.1 Malware Collection -- 5.2 Malware Execution -- 5.3 Feature Extraction -- 6 Evaluation -- 6.1 Experiment with LR -- 6.2 Experiment with FTRL Algorithms -- 7 Discussion -- 7.1 Prediction Accuracy -- 7.2 Running Time -- 8 Conclusions and Future Work -- A Proof of Theorem1 -- References -- Real-Time Validation of Retail Gasoline Prices -- 1 Introduction -- 2 Related Research -- 2.1 Factors Affecting Gasoline Prices -- 2.2 The Most Common Action Model -- 3 The PCR Real-Time Prediction Model -- 3.1 Price Change Rules -- 3.2 Prediction Using Price Change Rules -- 3.3 Description of the Method -- 3.4 Evaluation of the PCR Method -- 4 Experimental Evaluation -- 5 Conclusion -- References -- Regression -- General Meta-Model Framework for Surrogate-Based Numerical Optimization -- 1 Introduction -- 2 Background and Related Work -- 2.1 Numerical Optimization -- 2.2 Estimating Parameters of Ordinary Differential Equations -- 2.3 Surrogate-Based Numerical Optimization.
3 Meta Model for Surrogate-Based Optimization -- 3.1 Meta-Model Framework -- 3.2 Uninformed Meta Model -- 3.3 Relevator Meta Model -- 4 Empirical Evaluation of the Meta-Model Variants -- 4.1 Parameter Estimation Problems -- 4.2 Experimental Setup -- 4.3 Results -- 5 Conclusion -- References -- Evaluation of Different Heuristics for Accommodating Asymmetric Loss Functions in Regression -- 1 Introduction -- 2 Problem Formulation -- 3 Related Work -- 4 Empirical Approaches Based on Prediction Shift -- 4.1 Constant Shift -- 4.2 Pointwise Shift -- 4.3 Learned Model-Based Shift -- 4.4 Assumed Error Model-Based Shift -- 4.5 k-Nearest Neighbors Based Methods -- 5 Experimental Comparison of Methods -- 5.1 Regression Methods Used -- 5.2 Loss Functions Used -- 5.3 Results -- 6 Conclusion -- References -- Differentially Private Empirical Risk Minimization with Input Perturbation -- 1 Introduction -- 2 Problem Definition and Preliminary -- 3 Input Perturbation -- 3.1 Loss Function for Input Perturbation -- 3.2 Input Perturbation Method -- 3.3 Privacy of Input Perturbation -- 3.4 Utility Analysis -- 4 Conclusion -- References -- Label Classification -- On a New Competence Measure Applied to the Dynamic Selection of Classifiers Ensemble -- 1 Introduction -- 2 Multiclassifier System -- 2.1 Preliminaries -- 2.2 Measure of Competence -- 2.3 DES Systems -- 3 Experiments -- 3.1 Experimental Setup -- 3.2 Results and Discussion -- 4 Conclusion -- References -- Multi-label Classification Using Random Label Subset Selections -- 1 Introduction -- 2 MLC Using Random Label Subset Selections -- 3 Experimental Design -- 4 Results -- 5 Conclusions and Future Work -- References -- Option Predictive Clustering Trees for Hierarchical Multi-label Classification -- 1 Introduction -- 2 Option Predictive Clustering Trees -- 3 Experimental Design -- 4 Results and Discussion. 5 Conclusions -- References -- Deep Learning -- Re-training Deep Neural Networks to Facilitate Boolean Concept Extraction -- 1 Introduction -- 2 Knowledge Distillation from Neural Networks -- 2.1 Rule Extraction -- 2.2 Connection Pruning -- 3 The DEEPRED Algorithm -- 3.1 Overview -- 3.2 Extraction of DNF Formulas from Trees -- 3.3 Simplification and Post-pruning of Expressions -- 4 Retraining DNNs to Extract Better Representations -- 4.1 Weight Sparseness Pruning -- 4.2 Activation Polarization -- 5 Experiments -- 5.1 Experimental Setup -- 5.2 Characteristics of the Trained Networks -- 5.3 Reconstruction Using the Entire Dataset -- 5.4 Reconstruction Using Part of the Dataset -- 6 Conclusion -- References -- An In-Depth Experimental Comparison of RNTNs and CNNs for Sentence Modeling -- 1 Introduction -- 2 Method -- 3 Experiments -- 3.1 Experimental Settings -- 3.2 Task 1: Sentiment Analysis -- 3.3 Task 2: Sentence Categorization -- 3.4 Comparison of CNN Architectures -- 4 Conclusions -- References -- Feature Selection -- Improving Classification Accuracy by Means of the Sliding Window Method in Consistency-Based Feature Selection -- 1 Introduction -- 2 Feature Selection Methods -- 2.1 Feature Ranking Methods -- 2.2 Pairwise Evaluation Methods -- 2.3 Consistency-Based Algorithms -- 3 Our Proposal -- 3.1 Defieciencies of steepest-descent Search -- 4 Experiments -- 4.1 Numbers of Features Selected and Auc-Roc Scores -- 4.2 Efficiency -- 5 Conclusion and Future Works -- References -- Feature Ranking for Multi-target Regression with Tree Ensemble Methods -- 1 Introduction -- 2 Predictive Clustering Trees for Multi-target Regression -- 3 Feature Ranking via Ensembles of PCTs -- 3.1 Ensembles of PCTs -- 3.2 Ensemble Feature Ranking Methods -- 4 Experimental Design -- 4.1 Experimental Questions -- 4.2 Data Description -- 4.3 Evaluation Methodology. 4.4 Statistical Analysis of the Results -- 4.5 Parameter Instantiation -- 5 Results and Discussion -- 5.1 Are the Obtained Feature Rankings Relevant? -- 5.2 Comparison of the Different Ranking Methods -- 5.3 Comparison of the Different Ensemble Methods -- 5.4 Selecting the Best Ensemble-Ranking Pair -- 6 Conclusions -- References -- Recommendation System -- Recommending Collaborative Filtering Algorithms Using Subsampling Landmarkers -- 1 Introduction -- 2 Related Work -- 2.1 Collaborative Filtering -- 2.2 Metalearning -- 2.3 Algorithm Selection for CF -- 3 Subsampling Landmarkers for Collaborative Filtering -- 3.1 Subsampling Landmarkers -- 3.2 Experimental Procedure -- 4 Results and Discussion -- 4.1 Metalevel Evaluation -- 4.2 Baselevel Performance Analysis -- 4.3 Metaknowledge -- 5 Conclusions and Future Work -- References -- Community Detection -- Recursive Extraction of Modular Structure from Layered Neural Networks Using Variational Bayes Method -- 1 Introduction -- 2 Layered Neural Networks -- 3 Recursive Extraction of Modular Structure from Layered Neural Networks Using Variational Bayes Method -- 3.1 Community Detection Using Variational Bayes Method -- 3.2 Modular Representation of Layered Neural Networks -- 3.3 Recursive Extraction of Modular Structure and Pruning -- 4 Experiment -- 4.1 Discovery of a Hidden Structure in a Layered Neural Network -- 4.2 Analysis of STUDENT ALCOHOL CONSUMPTION Data Set -- 5 Discussion -- 6 Conclusion -- References -- Discovering Hidden Knowledge in Carbon Emissions Data: A Multilayer Network Approach -- 1 Introduction -- 2 Data Collection and Preparation -- 3 Proposed Multilayer Network -- 3.1 Building a Multilayer Network -- 3.2 Community Detection on Multilayer Networks -- 4 Results and Discussion -- 4.1 Knowledge Discovery in Carbon Emissions Networks -- 4.2 Community Detection on CETA-MLN. 4.3 Impact of Varying Coupling and Resolution Parameters -- 5 Conclusion and Future Work -- References -- Topic Extraction on Twitter Considering Author's Role Based on Bipartite Networks -- 1 Introduction -- 2 Related Work -- 3 Community Detection Technique from Bipartite Networks -- 4 Proposed Method -- 4.1 Step 1: Creation of Author-Word Count Matrices -- 4.2 Step 2: Clustering and Step 3: Feature Selection -- 4.3 Step 4: Topic Detection -- 5 Experimental Result -- 5.1 Target Data -- 5.2 Step 1: Creation of Author-Word Count Matrices -- 5.3 Step 2: Clustering and Step 3: Feature Selection -- 5.4 Step 4: Topic Detection -- 6 Conclusion -- References -- Pattern Mining -- Mining Strongly Closed Itemsets from Data Streams -- 1 Introduction -- 2 Related Work -- 3 The Problem Setting -- 4 The Mining Algorithm -- 4.1 Sampling -- 4.2 Incremental Update -- 5 Empirical Evaluation -- 5.1 Speedup -- 5.2 Approximation Quality -- 6 Concluding Remarks -- References -- Extracting Mutually Dependent Multisets -- 1 Introduction -- 2 Mutually Dependent Multisets -- 3 Tail Occurrence of Multisets -- 4 Algorithm to Extract Mutually Dependent Multisets -- 5 Experimental Results -- 5.1 Antibiogram -- 5.2 Artificial Data -- 6 Conclusion and Future Works -- References -- Bioinformatics -- LOCANDA: Exploiting Causality in the Reconstruction of Gene Regulatory Networks -- 1 Introduction -- 2 Related Work -- 3 The Method LOCANDA -- 4 Experiments -- 5 Conclusions and Future Work -- References -- Discovery of Salivary Gland Tumors' Biomarkers via Co-Regularized Sparse-Group Lasso -- 1 Background and Motivation -- 2 Previous Work -- 3 Methodology -- 3.1 Co-Regularized Sparse-Group Lasso -- 3.2 Stability Selection and Randomization Test -- 4 Experiments -- 5 Results and Discussion -- 5.1 Model Performance Evaluation -- 5.2 Biological Interpretation -- 6 Conclusions -- References. Knowledge Discovery. |
Record Nr. | UNISA-996466246103316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Discovery Science : 20th International Conference, DS 2017, Kyoto, Japan, October 15–17, 2017, Proceedings / / edited by Akihiro Yamamoto, Takuya Kida, Takeaki Uno, Tetsuji Kuboyama |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (XV, 357 p. 90 illus.) |
Disciplina | 501 |
Collana | Lecture Notes in Artificial Intelligence |
Soggetto topico |
Artificial intelligence
Data mining Application software Artificial Intelligence Data Mining and Knowledge Discovery Information Systems Applications (incl. Internet) Computer Appl. in Social and Behavioral Sciences |
ISBN | 3-319-67786-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Abstracts of Invited Talks -- Machine Learning from Weak Supervision - Towards Accurate Classification with Low Labeling Costs -- Automatic Design of Functional Molecules and Materials -- Contents -- Online Learning -- Context-Based Abrupt Change Detection and Adaptation for Categorical Data Streams -- 1 Introduction -- 2 Background -- 2.1 DILCA Context-Based Similarity Measure -- 2.2 CDCStream Categorical Drift Detector -- 3 FG-CDCStream Algorithm -- 4 Experimentation -- 4.1 Results -- 4.2 Discussion -- 5 Conclusion -- References -- A New Adaptive Learning Algorithm and Its Application to Online Malware Detection -- 1 Introduction -- 2 Related Work -- 2.1 Batch Learning in Malware Detection -- 2.2 Online Learning in Malware Detection -- 3 Problem Statement -- 4 Methodology -- 4.1 Batch Learning -- LR -- 4.2 Online Learning -- FTRL-DP -- 5 Data Collection -- 5.1 Malware Collection -- 5.2 Malware Execution -- 5.3 Feature Extraction -- 6 Evaluation -- 6.1 Experiment with LR -- 6.2 Experiment with FTRL Algorithms -- 7 Discussion -- 7.1 Prediction Accuracy -- 7.2 Running Time -- 8 Conclusions and Future Work -- A Proof of Theorem1 -- References -- Real-Time Validation of Retail Gasoline Prices -- 1 Introduction -- 2 Related Research -- 2.1 Factors Affecting Gasoline Prices -- 2.2 The Most Common Action Model -- 3 The PCR Real-Time Prediction Model -- 3.1 Price Change Rules -- 3.2 Prediction Using Price Change Rules -- 3.3 Description of the Method -- 3.4 Evaluation of the PCR Method -- 4 Experimental Evaluation -- 5 Conclusion -- References -- Regression -- General Meta-Model Framework for Surrogate-Based Numerical Optimization -- 1 Introduction -- 2 Background and Related Work -- 2.1 Numerical Optimization -- 2.2 Estimating Parameters of Ordinary Differential Equations -- 2.3 Surrogate-Based Numerical Optimization.
3 Meta Model for Surrogate-Based Optimization -- 3.1 Meta-Model Framework -- 3.2 Uninformed Meta Model -- 3.3 Relevator Meta Model -- 4 Empirical Evaluation of the Meta-Model Variants -- 4.1 Parameter Estimation Problems -- 4.2 Experimental Setup -- 4.3 Results -- 5 Conclusion -- References -- Evaluation of Different Heuristics for Accommodating Asymmetric Loss Functions in Regression -- 1 Introduction -- 2 Problem Formulation -- 3 Related Work -- 4 Empirical Approaches Based on Prediction Shift -- 4.1 Constant Shift -- 4.2 Pointwise Shift -- 4.3 Learned Model-Based Shift -- 4.4 Assumed Error Model-Based Shift -- 4.5 k-Nearest Neighbors Based Methods -- 5 Experimental Comparison of Methods -- 5.1 Regression Methods Used -- 5.2 Loss Functions Used -- 5.3 Results -- 6 Conclusion -- References -- Differentially Private Empirical Risk Minimization with Input Perturbation -- 1 Introduction -- 2 Problem Definition and Preliminary -- 3 Input Perturbation -- 3.1 Loss Function for Input Perturbation -- 3.2 Input Perturbation Method -- 3.3 Privacy of Input Perturbation -- 3.4 Utility Analysis -- 4 Conclusion -- References -- Label Classification -- On a New Competence Measure Applied to the Dynamic Selection of Classifiers Ensemble -- 1 Introduction -- 2 Multiclassifier System -- 2.1 Preliminaries -- 2.2 Measure of Competence -- 2.3 DES Systems -- 3 Experiments -- 3.1 Experimental Setup -- 3.2 Results and Discussion -- 4 Conclusion -- References -- Multi-label Classification Using Random Label Subset Selections -- 1 Introduction -- 2 MLC Using Random Label Subset Selections -- 3 Experimental Design -- 4 Results -- 5 Conclusions and Future Work -- References -- Option Predictive Clustering Trees for Hierarchical Multi-label Classification -- 1 Introduction -- 2 Option Predictive Clustering Trees -- 3 Experimental Design -- 4 Results and Discussion. 5 Conclusions -- References -- Deep Learning -- Re-training Deep Neural Networks to Facilitate Boolean Concept Extraction -- 1 Introduction -- 2 Knowledge Distillation from Neural Networks -- 2.1 Rule Extraction -- 2.2 Connection Pruning -- 3 The DEEPRED Algorithm -- 3.1 Overview -- 3.2 Extraction of DNF Formulas from Trees -- 3.3 Simplification and Post-pruning of Expressions -- 4 Retraining DNNs to Extract Better Representations -- 4.1 Weight Sparseness Pruning -- 4.2 Activation Polarization -- 5 Experiments -- 5.1 Experimental Setup -- 5.2 Characteristics of the Trained Networks -- 5.3 Reconstruction Using the Entire Dataset -- 5.4 Reconstruction Using Part of the Dataset -- 6 Conclusion -- References -- An In-Depth Experimental Comparison of RNTNs and CNNs for Sentence Modeling -- 1 Introduction -- 2 Method -- 3 Experiments -- 3.1 Experimental Settings -- 3.2 Task 1: Sentiment Analysis -- 3.3 Task 2: Sentence Categorization -- 3.4 Comparison of CNN Architectures -- 4 Conclusions -- References -- Feature Selection -- Improving Classification Accuracy by Means of the Sliding Window Method in Consistency-Based Feature Selection -- 1 Introduction -- 2 Feature Selection Methods -- 2.1 Feature Ranking Methods -- 2.2 Pairwise Evaluation Methods -- 2.3 Consistency-Based Algorithms -- 3 Our Proposal -- 3.1 Defieciencies of steepest-descent Search -- 4 Experiments -- 4.1 Numbers of Features Selected and Auc-Roc Scores -- 4.2 Efficiency -- 5 Conclusion and Future Works -- References -- Feature Ranking for Multi-target Regression with Tree Ensemble Methods -- 1 Introduction -- 2 Predictive Clustering Trees for Multi-target Regression -- 3 Feature Ranking via Ensembles of PCTs -- 3.1 Ensembles of PCTs -- 3.2 Ensemble Feature Ranking Methods -- 4 Experimental Design -- 4.1 Experimental Questions -- 4.2 Data Description -- 4.3 Evaluation Methodology. 4.4 Statistical Analysis of the Results -- 4.5 Parameter Instantiation -- 5 Results and Discussion -- 5.1 Are the Obtained Feature Rankings Relevant? -- 5.2 Comparison of the Different Ranking Methods -- 5.3 Comparison of the Different Ensemble Methods -- 5.4 Selecting the Best Ensemble-Ranking Pair -- 6 Conclusions -- References -- Recommendation System -- Recommending Collaborative Filtering Algorithms Using Subsampling Landmarkers -- 1 Introduction -- 2 Related Work -- 2.1 Collaborative Filtering -- 2.2 Metalearning -- 2.3 Algorithm Selection for CF -- 3 Subsampling Landmarkers for Collaborative Filtering -- 3.1 Subsampling Landmarkers -- 3.2 Experimental Procedure -- 4 Results and Discussion -- 4.1 Metalevel Evaluation -- 4.2 Baselevel Performance Analysis -- 4.3 Metaknowledge -- 5 Conclusions and Future Work -- References -- Community Detection -- Recursive Extraction of Modular Structure from Layered Neural Networks Using Variational Bayes Method -- 1 Introduction -- 2 Layered Neural Networks -- 3 Recursive Extraction of Modular Structure from Layered Neural Networks Using Variational Bayes Method -- 3.1 Community Detection Using Variational Bayes Method -- 3.2 Modular Representation of Layered Neural Networks -- 3.3 Recursive Extraction of Modular Structure and Pruning -- 4 Experiment -- 4.1 Discovery of a Hidden Structure in a Layered Neural Network -- 4.2 Analysis of STUDENT ALCOHOL CONSUMPTION Data Set -- 5 Discussion -- 6 Conclusion -- References -- Discovering Hidden Knowledge in Carbon Emissions Data: A Multilayer Network Approach -- 1 Introduction -- 2 Data Collection and Preparation -- 3 Proposed Multilayer Network -- 3.1 Building a Multilayer Network -- 3.2 Community Detection on Multilayer Networks -- 4 Results and Discussion -- 4.1 Knowledge Discovery in Carbon Emissions Networks -- 4.2 Community Detection on CETA-MLN. 4.3 Impact of Varying Coupling and Resolution Parameters -- 5 Conclusion and Future Work -- References -- Topic Extraction on Twitter Considering Author's Role Based on Bipartite Networks -- 1 Introduction -- 2 Related Work -- 3 Community Detection Technique from Bipartite Networks -- 4 Proposed Method -- 4.1 Step 1: Creation of Author-Word Count Matrices -- 4.2 Step 2: Clustering and Step 3: Feature Selection -- 4.3 Step 4: Topic Detection -- 5 Experimental Result -- 5.1 Target Data -- 5.2 Step 1: Creation of Author-Word Count Matrices -- 5.3 Step 2: Clustering and Step 3: Feature Selection -- 5.4 Step 4: Topic Detection -- 6 Conclusion -- References -- Pattern Mining -- Mining Strongly Closed Itemsets from Data Streams -- 1 Introduction -- 2 Related Work -- 3 The Problem Setting -- 4 The Mining Algorithm -- 4.1 Sampling -- 4.2 Incremental Update -- 5 Empirical Evaluation -- 5.1 Speedup -- 5.2 Approximation Quality -- 6 Concluding Remarks -- References -- Extracting Mutually Dependent Multisets -- 1 Introduction -- 2 Mutually Dependent Multisets -- 3 Tail Occurrence of Multisets -- 4 Algorithm to Extract Mutually Dependent Multisets -- 5 Experimental Results -- 5.1 Antibiogram -- 5.2 Artificial Data -- 6 Conclusion and Future Works -- References -- Bioinformatics -- LOCANDA: Exploiting Causality in the Reconstruction of Gene Regulatory Networks -- 1 Introduction -- 2 Related Work -- 3 The Method LOCANDA -- 4 Experiments -- 5 Conclusions and Future Work -- References -- Discovery of Salivary Gland Tumors' Biomarkers via Co-Regularized Sparse-Group Lasso -- 1 Background and Motivation -- 2 Previous Work -- 3 Methodology -- 3.1 Co-Regularized Sparse-Group Lasso -- 3.2 Stability Selection and Randomization Test -- 4 Experiments -- 5 Results and Discussion -- 5.1 Model Performance Evaluation -- 5.2 Biological Interpretation -- 6 Conclusions -- References. Knowledge Discovery. |
Record Nr. | UNINA-9910484792603321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|