Accuracy Enhancement Technologies for Micromachining Processes / / edited by Golam Kibria, B. Bhattacharyya |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (XV, 214 p. 131 illus., 83 illus. in color.) |
Disciplina | 621.8 |
Collana | Lecture Notes in Mechanical Engineering |
Soggetto topico |
Machinery
Manufactures Nanotechnology Machinery and Machine Elements Manufacturing, Machines, Tools, Processes Nanotechnology and Microengineering |
ISBN | 981-15-2117-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Accuracy Improvement in Tool-based Micromachining -- Strategies for Improving Performance of Ultrasonic Micromachining Process -- Strategies of Improving Accuracy in Micro-EDM -- Accuracy Improvement and Precision Measurement on Micro-EDM -- Improvement of Profile Accuracy in WEDM - a Novel Technique -- Improvement in Surface Finish and Geometrical Accuracy by Laser Micro-Turning -- Laser Based Fabrication of Microchannels -- Accuracy Improvement Techniques in Electrochemical Micromachining (EMM) -- Feature Generation Using Indigenously Developed Micro‐Electro Chemical Discharge Machining (µ‐ECDM) Process -- Improvements in Machining Performances of Wire-electrochemical Discharge Micromachining -- Generation of Nano-level Surface Finish by Advanced Nanofinishing Processes. |
Record Nr. | UNINA-9910377819203321 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Hybrid micromachining and microfabrication technologies : principles, varieties and applications / / edited by Golam Kibria [and three others] |
Pubbl/distr/stampa | Hoboken, NJ : , : John Wiley & Sons, Inc. ; Scrivener Publishing LLC, , [2023] |
Descrizione fisica | 1 online resource (339 pages) |
Collana | Innovations in Materials and Manufacturing Series |
Soggetto topico | Micromachining |
ISBN |
9781394174478
1-394-17494-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgement -- Chapter 1 Overview of Hybrid Micromachining and Microfabrication Techniques -- 1.1 Introduction -- 1.2 Classification of Hybrid Micromachining and Microfabrication Techniques -- 1.2.1 Compound Processes -- 1.2.2 Methods Aided by Various Energy Sources -- 1.2.3 Processing Using a Hybrid Tool -- 1.3 Challenges in Hybrid Micromachining -- 1.4 Conclusions -- 1.5 Future Research Opportunities -- References -- Chapter 2 A Review on Experimental Studies in Electrochemical Discharge Machining -- 2.1 Introduction -- 2.2 Historical Background -- 2.3 Principle of Electrochemical Discharge Machining Process -- 2.4 Basic Mechanism of Electrochemical Discharge Machining Process -- 2.5 Application of ECDM Process -- 2.6 Literature Review on ECDM -- 2.6.1 Literature Review on Theoretical Modeling -- 2.6.2 Literature Review on Internal Behavioral Studies -- 2.6.3 Literature Review on Design of ECDM -- 2.6.4 Literature Review on Workpiece Materials Used in ECDM -- 2.6.5 Literature Review on Tooling Materials and Its Design in ECDM -- 2.6.6 Literature Review on Electrolyte Chemicals Used in ECDM -- 2.6.7 Literature Review on Optimization Techniques Used in ECDM -- 2.7 Conclusion -- Acknowledgments -- References -- Chapter 3 Laser-Assisted Micromilling -- 3.1 Introduction -- 3.2 Laser-Assisted Micromilling -- 3.2.1 Laser-Assisted Micromilling of Steel Alloys -- 3.2.2 Laser-Assisted Micromilling of Titanium Alloys -- 3.2.3 Laser-Assisted Micromilling of Ni Alloys -- 3.2.4 Laser-Assisted Micromilling of Cementite Carbide -- 3.2.5 Laser-Assisted Micromilling of Ceramics -- 3.3 Conclusion -- References -- Chapter 4 Ultrasonic-Assisted Electrochemical Micromachining -- 4.1 Introduction -- 4.2 Ultrasonic Effect -- 4.2.1 Pumping Effect -- 4.2.2 Cavitation Effect -- 4.3 Experimental Procedure.
4.4 Results and Discussion -- 4.4.1 Effect of Traditional Electrochemical Micromachining -- 4.4.2 Effect of Electrolyte Jet During Micropatterning -- 4.4.3 Effect of Ultrasonic Assistance During Micropatterning -- 4.4.4 Effect of Ultrasonic Amplitude During Micropatterning -- 4.4.5 Influence of Working Voltage During Micropatterning -- 4.4.6 Influence of Pulse-Off Time During Micropatterning -- 4.4.7 Influence of Electrode Feed Rate During Micropatterning -- 4.5 Conclusions -- References -- Chapter 5 Micro-Electrochemical Piercing on SS 204 -- 5.1 Introduction -- 5.2 Experimentation on SS 204 Plates With Cu Tool Electrodes -- 5.3 Results and Discussions -- 5.4 Conclusions -- References -- Chapter 6 Laser-Assisted Electrochemical Discharge Micromachining -- 6.1 Introduction -- 6.2 Experimental Procedure -- 6.3 Results and Discussion -- 6.3.1 ECDM Pre-Process -- 6.3.2 Laser Pre-Process -- 6.4 Conclusions -- References -- Chapter 7 Laser-Assisted Hybrid Micromachining Processes and Its Applications -- 7.1 Introduction -- 7.2 Laser-Assisted Hybrid Micromachining -- 7.3 Laser-Assisted Traditional-HMMPs -- 7.3.1 Laser-Assisted Microturning Process -- 7.3.2 Laser-Assisted Microdrilling Process -- 7.3.3 Laser-Assisted Micromilling Process -- 7.3.4 Laser-Assisted Microgrinding Process -- 7.4 Laser-Assisted Nontraditional HMMPs -- 7.4.1 Laser-Assisted Electrodischarge Micromachining -- 7.4.2 Laser-Assisted Electrochemical Micromachining -- 7.4.3 Laser-Assisted Electrochemical Spark Micromachining -- 7.4.4 Laser-Assisted Water Jet Micromachining -- 7.5 Capabilities and Shortfalls of LA-HMMPs -- 7.6 Conclusion -- Acknowledgment -- References -- Chapter 8 Hybrid Laser-Assisted Jet Electrochemical Micromachining Process -- 8.1 Introduction -- 8.2 Overview of Electrochemical Machining -- 8.3 Importance of Electrochemical Micromachining. 8.4 Fundamentals of Electrochemical Micromachining -- 8.4.1 Electrochemistry of Electrochemical Micromachining -- 8.4.2 Mechanism of Material Removal -- 8.5 Major Factors of EMM -- 8.5.1 Nature of Power Supply -- 8.5.2 Interelectrode Gap (IEG) -- 8.5.3 Temperature, Concentration, and Electrolyte Flow -- 8.6 Jet Electrochemical Micromachining -- 8.7 Laser as Assisting Process -- 8.8 Laser-Assisted Jet Electrochemical Micromachining (LA-JECM) -- 8.8.1 Working Principles of LAJECM -- 8.8.2 Mechanism of Material Removal -- 8.8.3 Materials -- 8.8.4 Theoretical and Experimental Method for Process Energy Distribution -- 8.8.5 LAJECM Process Temperature -- 8.8.6 Material Removal Rate and Taper Angle -- 8.8.7 LAJECM and JECM Comparison -- 8.8.8 Machining Precision -- 8.8.8.1 Geometry Precision -- 8.8.8.2 Profile Surface Roughness -- 8.9 Applications of LAJECM -- References -- Chapter 9 Ultrasonic Vibration-Assisted Microwire Electrochemical Discharge Machining -- 9.1 Introduction -- 9.2 Experimental Setup -- 9.3 Results and Discussion -- 9.3.1 Influence of Ultrasonic Amplitude on Micro Slit Width -- 9.3.2 Influence of Voltage on Micro Slit Width -- 9.3.3 Effect of Duty Ratio on Micro Slit Width -- 9.3.4 Influence of Frequency on Slit Width -- 9.3.5 Analysis of Micro Slits -- 9.4 Conclusions -- References -- Chapter 10 Study of Soda-Lime Glass Machinability by Gunmetal Tool in Electrochemical Discharge Machining and Process Parameters Optimization Using Grey Relational Analysis -- 10.1 Introduction -- 10.2 Experimental Conditions -- 10.3 Analysis of Average MRR of Workpiece (Soda-Lime Glass) Through Gunmetal Electrode -- 10.3.1 ANOVA for Average MRR -- 10.3.2 Influence of Input Factors on Average MRR -- 10.4 Analysis of Average Depth of Machined Hole on Soda-Lime Glass Through Gunmetal Electrode -- 10.4.1 ANOVA for Average Machined Depth. 10.4.2 Influence of Input Factors on Average Machined Depth -- 10.5 Analysis of Average Diameter of Hole of Soda-Lime Glass Through Gunmetal Electrode -- 10.5.1 ANOVA for Average Hole Diameter -- 10.5.2 Influence of Input Factors on Average Hole Diameter -- 10.6 Grey Relational Analysis Optimization of Soda-Lime Glass Results by Gunmetal Electrode -- 10.6.1 Methodology of Grey Relational Analysis -- 10.6.2 Data Pre-Processing -- 10.6.3 Grey Relational Generating -- 10.6.4 Deviation Sequence -- 10.6.5 Grey Relational Coefficient -- 10.6.6 Grey Relational Grade -- 10.7 Conclusion -- Acknowledgments -- References -- Chapter 11 Micro Turbine Generator Combined with Silicon Structure and Ceramic Magnetic Circuit -- 11.1 Introduction -- 11.2 Concept -- 11.3 Fabrication Technology -- 11.3.1 Microfabrication Technology of Silicon Material -- 11.3.2 Multilayer Ceramic Technology -- 11.4 Designs and Experiments -- 11.4.1 Designs of Turbine and Magnetic Circuit for Single-Phase Type -- 11.4.2 Designs of Turbine and Magnetic Circuit for Three-Phase Type -- 11.4.3 Rotational Experiment and Rotor Blade Design -- 11.4.4 Low Boiling Point Fluid and Experiment -- 11.5 Results and Discussion -- 11.5.1 Fabricated Evaluation -- 11.5.2 Rotational Result -- 11.5.3 Comparison of Rotor Shape and Rotational Motion -- 11.5.4 Phase Change -- 11.6 Conclusions -- Acknowledgment -- References -- Chapter 12 A Review on Hybrid Micromachining Process and Technologies -- 12.1 Introduction -- 12.2 Characteristics of Hybrid-Micromachining -- 12.3 Bibliometric Survey of Micromachining to Hybrid-Micromachining -- 12.4 Material Removal in Microsizes -- 12.5 Nontraditional Hybrid-Micromachining Technologies -- 12.6 Classification of Techniques Used for Micromachining to Hybrid-Micromachining -- 12.6.1 Classification According to Material Removal Hybrid-Micromachining Phenomena. 12.6.2 Classification According to Categories Based on Material Removal Accuracy -- 12.6.3 Classification According to Hybrid-Micromachining Purposes -- 12.6.4 Classification of Hybrid Micromanufacturing Processes -- 12.7 Materials Are Used and Application of Hybrid-Micromachining -- 12.8 Conclusions -- References -- Chapter 13 Material Removal in Spark-Assisted Chemical Engraving for Micromachining -- 13.1 Introduction -- 13.2 Essentials of SACE -- 13.2.1 Instances of SACE Micromachining -- 13.3 Genesis of SACE Acronym: A Brief Historical Survey -- 13.4 SACE: A Viable Micromachining Technology -- 13.4.1 Mechanical μ-Machining Techniques -- 13.4.2 Chemical μ-Machining Methods -- 13.4.3 Thermal μ-Machining Methods -- 13.5 Material Removal Mechanism in SACE μ-Machining -- 13.5.1 General Aspects -- 13.5.2 Micromachining at Shallow Depths -- 13.5.3 Micromachining at High Depths -- 13.5.4 Micromachining by Chemical Reaction -- 13.6 SACE μ-Machining Process Control -- 13.6.1 Analysis of Process -- 13.6.2 Etch Promotion -- 13.7 Conclusion and Scope for Future Work -- References -- Index -- EULA. |
Record Nr. | UNINA-9910830390003321 |
Hoboken, NJ : , : John Wiley & Sons, Inc. ; Scrivener Publishing LLC, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Micro-electrical Discharge Machining Processes [[electronic resource] ] : Technologies and Applications / / edited by Golam Kibria, Muhammad P. Jahan, B. Bhattacharyya |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (xiv, 314 pages) |
Disciplina | 671.35 |
Collana | Materials Forming, Machining and Tribology |
Soggetto topico |
Manufactures
Engineering Manufacturing, Machines, Tools, Processes Materials Engineering Machinery and Machine Elements |
ISBN | 981-13-3074-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. Introduction -- 2. Micro EDM drilling -- 3. Micro wire EDM -- 4. Micro EDM milling -- 5. Dry and near-dry micro EDM -- 6. Micro electrical discharge grinding -- 7. Reverse micro EDM -- 8. Powder mixed micro EDM -- 9. Ultrasonic vibration assisted micro EDM -- 10. Laser assisted micro EDM -- 11. Sequential micro EDM -- 12. Piezoelectric self-adaptive micro EDM -- 13. Other hybrid processes using micro EDM. |
Record Nr. | UNINA-9910350280603321 |
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Non-traditional Micromachining Processes : Fundamentals and Applications / / edited by Golam Kibria, B. Bhattacharyya, J. Paulo Davim |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (XV, 422 p. 257 illus.) |
Disciplina | 620.1 |
Collana | Materials Forming, Machining and Tribology |
Soggetto topico |
Ceramics
Glass Composites (Materials) Composite materials Engineering—Materials Manufactures Ceramics, Glass, Composites, Natural Materials Materials Engineering Manufacturing, Machines, Tools, Processes |
ISBN | 3-319-52009-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Non-traditional micromachining processes: opportunities and challeges -- Electrical discharge micro-hole drilling process employing additive mixed dielectrics -- Tool wear compensation in micro EDM -- Advances on ultrasonic micro machining (USMM) process -- Electrochemical discharge micro-machining of engineering materials -- Electrochemical micromachining (EMM) -- Electrochemical micromachining of titanium and its alloys -- Laser micro-turning process of aluminium oxide ceramic using pulsed Nd:YAG laser -- Fiber Laser Micro-Machining of Engineering Materials -- Laser beam micro cutting -- Underwater laser microchanneling. |
Record Nr. | UNINA-9910254334403321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|