top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Deep Learning Techniques for Automation and Industrial Applications
Deep Learning Techniques for Automation and Industrial Applications
Autore Rathore Pramod Singh
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (280 pages)
Disciplina 670.42/7028
Altri autori (Persone) AhujaSachin
BurriSrinivasa Rao
KhuntetaAjay
BaliyanAnupam
KumarAbhishek
Soggetto topico Automation
ISBN 1-394-23425-2
1-394-23427-9
1-394-23426-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Text Extraction from Images Using Tesseract -- 1.1 Introduction -- 1.1.1 Areas -- 1.1.2 Why Text Extraction? -- 1.1.3 Applications of OCR -- 1.2 Literature Review -- 1.3 Development Areas -- 1.3.1 React JavaScript (JS) -- 1.3.2 Flask -- 1.4 Existing System -- 1.5 Enhancing Text Extraction Using OCR Tesseract -- 1.6 Unified Modeling Language (UML) Diagram -- 1.6.1 Use Case Diagram -- 1.6.2 Model Architecture -- 1.6.3 Pseudocode -- 1.7 System Requirements -- 1.7.1 Software Requirements -- 1.7.2 Hardware Requirements -- 1.8 Testing -- 1.9 Result -- 1.10 Future Scope -- 1.11 Conclusion -- References -- Chapter 2 Chili Leaf Classification Using Deep Learning Techniques -- 2.1 Introduction -- 2.2 Objectives -- 2.3 Literature Survey -- 2.4 About the Dataset -- 2.5 Methodology -- 2.6 Result -- 2.7 Conclusion and Future Work -- References -- Chapter 3 Fruit Leaf Classification Using Transfer Learning Techniques -- 3.1 Introduction -- 3.2 Literature Review -- 3.3 Methodology -- 3.3.1 Image Preprocessing -- 3.3.2 Data Augmentation -- 3.3.3 Deep Learning Models -- 3.3.4 Accuracy Chart -- 3.3.5 Accuracy and Loss Graph -- 3.4 Conclusion and Future Work -- References -- Chapter 4 Classification of University of California (UC), Merced Land-Use Dataset Remote Sensing Images Using Pre-Trained Deep Learning Models -- 4.1 Introduction -- 4.2 Motivation and Contribution -- 4.2.1 Related Work -- 4.3 Methodology -- 4.3.1 Pre-Trained Models -- 4.3.2 Dataset -- 4.3.3 Training Processes -- 4.4 Experiments and Results -- 4.4.1 VGG Family -- 4.4.2 ResNet Family -- 4.4.2.1 ResNet101 -- 4.4.2.2 ResNet152 -- 4.4.3 MobileNet Family -- 4.4.4 Inception Family -- 4.4.5 Xception Family -- 4.4.6 DenseNet Family -- 4.4.7 NasNet Family -- 4.4.8 EfficientNet Family -- 4.4.9 ResNet Version 2.
4.5 Conclusion -- References -- Chapter 5 Sarcastic and Phony Contents Detection in Social Media Hindi Tweets -- 5.1 Introduction -- 5.1.1 Sarcasm in Social Media Hindi Tweets -- 5.2 Literature Review -- 5.2.1 Literature Review of Sarcasm Detection Based on Data Analysis Without Machine Learning Algorithms -- 5.2.1.1 Other Related Works without Machine Learning Algorithms for Sarcasm Detection -- 5.2.2 Literature Review of Sarcasm Detection with Machine Learning Algorithms and Based on Manual Feature Engineering Approach -- 5.3 Research Gap -- 5.4 Objective -- 5.5 Proposed Methodology -- 5.6 Expected Outcomes -- References -- Chapter 6 Removal of Haze from Synthetic and Real Scenes Using Deep Learning and Other AI Techniques -- 6.1 Introduction -- 6.2 Formation of a Haze Model -- 6.3 Different Techniques of Single-Image Dehazing -- 6.3.1 Contrast Enhancement -- 6.3.2 Dark Channel Prior -- 6.3.3 Color Attenuation Prior -- 6.3.4 Fusion Techniques -- 6.3.5 Deep Learning -- 6.4 Results and Discussions -- 6.5 Output for Synthetic Scenes -- 6.6 Output for Real Scenes -- 6.7 Conclusions -- References -- Chapter 7 HOG and Haar Feature Extraction-Based Security System for Face Detection and Counting -- 7.1 Introduction -- 7.1.1 Need for a Better Security System -- 7.2 Literature Survey -- 7.3 Proposed Work -- 7.3.1 Tools Used -- 7.3.2 Algorithm of the Proposed System -- 7.3.2.1 HOG-Based Individual Counting -- 7.3.2.2 Haar-Based Individual Counting -- 7.3.2.3 Combination of HOG and Haar -- 7.3.2.4 AdaBoost Learning Technique -- 7.3.2.5 KLT Tracker -- 7.4 Experiments and Results -- 7.5 Conclusion and Scope of Future Work -- References -- Chapter 8 A Comparative Analysis of Different CNN Models for Spatial Domain Steganalysis -- 8.1 Introduction -- 8.2 General Framework -- 8.2.1 Dataset -- 8.2.2 Deep Learning CNN Models -- 8.2.2.1 XuNet.
8.2.2.2 Pretrained Networks -- 8.3 Experimental Results and Analysis -- 8.4 Conclusion and Discussion -- Acknowledgments -- References -- Chapter 9 Making Invisible Bluewater Visible Using Machine and Deep Learning Techniques-A Review -- 9.1 Introduction -- 9.1.1 Why is It Difficult to Measure Subsurface Groundwater? -- 9.1.2 What are High Level Tasks Involved in Groundwater Measurement? -- 9.2 Determination of Groundwater Potential (GWP) Parameters -- 9.2.1 Groundwater Potential (GWP) Parameters -- 9.2.2 Analysis of the Key GWP Parameters -- 9.3 GWP Determination: Methods and Techniques -- 9.4 GWP Output: Applications -- 9.5 GWP Research Gaps: Future Research Areas -- 9.6 Conclusion -- References -- Chapter 10 Fruit Leaf Classification Using Transfer Learning for Automation and Industrial Applications -- 10.1 Introduction -- 10.1.1 Overview of Fruit Leaf Classification and Its Relevance in Automation and Industrial Applications -- 10.1.2 Challenges of Building a Classification Model from Scratch -- 10.1.3 Introduction to Transfer Learning as a Solution -- 10.1.4 Overview of Popular Pre-Trained Models -- 10.1.4.1 Visual Geometry Group -- 10.1.4.2 Residual Network -- 10.1.4.3 Inception -- 10.2 Data Collection and Preprocessing -- 10.2.1 Importance of Data Collection and Preprocessing -- 10.2.2 Data Augmentation in Fruit Leaf Classification -- 10.2.3 Normalization and Resizing in Fruit Leaf Classification -- 10.3 Loading a Pre-Trained Model for Fruit Leaf Classification Using Transfer Learning -- 10.3.1 Code Examples for Implementing Transfer Learning Using TensorFlow -- 10.4 Training and Evaluation -- 10.4.1 Explanation of Training and Evaluation Process -- 10.4.2 Metrics for Measuring Model Performance -- 10.5 Applications in Automation and Industry -- 10.5.1 Benefits of Using Transfer Learning in Automation and Industrial Settings.
10.5.2 Case Studies of Fruit Leaf Classification in Industry Using Transfer Learning -- 10.6 Conclusion -- 10.7 Future Work -- References -- Chapter 11 Green AI: Carbon-Footprint Decoupling System -- 11.1 Introduction -- 11.2 CO2 Emissions in Sectors -- 11.3 Heating and Cooking Emissions -- 11.4 Automobile Systems Emission -- 11.5 Power Systems Emission -- 11.5.1 Map -- 11.6 Total CO2 Emission -- 11.6.1 Relationship Between Tables -- 11.6.2 Group by Clause -- 11.6.3 Offshore Wind Storage Integration Method -- 11.6.4 Offshore Floating Wind and Power Generation Technology (OFWPP) -- 11.6.5 Wind Power Plant for Storage Mixing -- 11.6.6 The Effect on the Environment when Using Battery Storage -- 11.7 Green AI With a Control Strategy of Carbon Emission -- 11.8 Green Software -- 11.9 Conclusion -- 11.10 Future Scope and Limitation -- References -- Chapter 12 Review of State-of-Art Techniques for Political Polarization from Social Media Network -- 12.1 Introduction -- 12.1.1 Social Media -- 12.2 Political Polarization -- 12.2.1 Identification of the Parties -- 12.2.2 Definition of Political Ideology -- 12.2.3 Voting Conduct (Definition) -- 12.2.4 Definition of Policy Positions -- 12.2.5 Definition of Affective Polarization -- 12.2.6 Identifiability of Parties (Definition) -- 12.2.7 Definition of Political Ideology -- 12.2.8 Definition of Voting Behavior -- 12.2.9 Policy Positions (Definition) -- 12.2.10 Party Sorting -- 12.2.11 Affective Polarization (Definition) -- 12.3 State-of-the-Art Techniques -- 12.3.1 Word Embedding (WE) -- 12.3.2 Customary Models -- 12.3.3 Models of Deep Neural Networks (DNN) -- 12.3.4 Single and Hybrid ML Techniques -- 12.3.4.1 Single Methods -- 12.3.4.2 Hybrid Approaches -- 12.3.5 Multitask Learning (V) -- 12.3.5.1 Learning-Related Problem -- 12.3.5.2 Multi-Task Learning MTL -- 12.3.5.3 Architectures for Multiple Tasks.
12.3.5.4 Two MTL Deep Learning Methods -- 12.3.6 Techniques for Deep Learning -- 12.4 Literature Survey -- 12.5 Conclusion -- References -- Chapter 13 Collaborative Design and Case Analysis of Mobile Shopping Apps: A Deep Learning Approach -- 13.1 Introduction -- 13.1.1 Basic Rules in Shopping App Interaction Design -- 13.1.1.1 User-Centered Design Rules -- 13.1.2 Visual Interface Consistency -- 13.2 Personalized Interaction Design Framework for Mobile Shopping -- 13.2.1 Modelized Interaction Information Framework -- 13.2.2 Interactive Design Path Analysis -- 13.2.3 Optimization Design in the Page System -- 13.3 Case Analysis -- 13.4 Conclusions -- References -- Chapter 14 Exploring the Potential of Machine Learning and Deep Learning for COVID-19 Detection -- 14.1 Introduction -- 14.2 Supervised Learning Techniques -- 14.3 Unsupervised Learning Techniques -- 14.4 Deep Learning Techniques -- 14.5 Reinforcement Learning Techniques -- 14.6 Comparison of Machine Learning and Deep Learning Techniques -- 14.7 Challenges and Limitations -- 14.8 Conclusion and Future Directions -- References -- Index -- EULA.
Record Nr. UNINA-9910877827803321
Rathore Pramod Singh  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Recent Advancements in Artificial Intelligence : Proceedings of ICRAAI 2023 / / edited by Richi Nayak, Namita Mittal, Manoj Kumar, Zdzislaw Polkowski, Ajay Khunteta
Recent Advancements in Artificial Intelligence : Proceedings of ICRAAI 2023 / / edited by Richi Nayak, Namita Mittal, Manoj Kumar, Zdzislaw Polkowski, Ajay Khunteta
Autore Nayak Richi
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (409 pages)
Disciplina 006.3
Altri autori (Persone) MittalNamita
KumarManoj
PolkowskiZdzislaw
KhuntetaAjay
Collana Innovations in Sustainable Technologies and Computing
Soggetto topico Computational intelligence
Artificial intelligence
Cloud Computing
Internet of things
Computer networks - Security measures
Computational Intelligence
Artificial Intelligence
Internet of Things
Mobile and Network Security
ISBN 981-9711-11-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- About This Book -- Contents -- Editors and Contributors -- 1 A Survey on Computer Vision Methods and Approaches for the Detection of Humans in Video Surveillance Systems -- 1 Introduction -- 2 Database -- 3 Pre-Processing Techniques -- 4 Feature Extraction -- 5 Classification -- 6 Real Time Detection Systems -- 7 Human Detection Challenges -- 7.1 Image Plane Variations -- 7.2 Variation in Pose -- 7.3 Texture and Lighting Variation -- 7.4 Variation in Background -- 7.5 Variation in Shape -- 8 Conclusion -- References -- 2 UNFAZEDROADS: Pothole Management System -- 1 Introduction -- 2 Literature Survey -- 3 Methodology -- 3.1 Research Design -- 3.2 Data Collection -- 3.3 Data Analysis -- 4 Proposed System -- 5 Table of Analysis -- 6 Results and Discussions -- 7 Scope of Research -- 8 Future Scope -- 9 Conclusion -- References -- 3 DeepMint: Non-fungible Token Generation Using Deep Learning -- 1 Introduction -- 2 Literature Review -- 2.1 Review of Existing Systems -- 2.2 Limitations of Existing Systems -- 3 Analysis -- 4 Implementation -- 4.1 Design Details -- 4.2 Architecture and Methodology -- 5 Results -- 5.1 Performance Evaluation Parameters -- 5.2 Implementation Results -- 6 Conclusion -- References -- 4 Empowering Gestures: Composing Succinct Meaning Using Vision and Swin Transformers for Indian Sign Language -- 1 Introduction -- 2 Literature Survey -- 3 Overview of Techniques -- 3.1 Convolutional Neural Networks -- 3.2 Vision Transformers -- 3.3 Swin Transformer -- 3.4 ReLU Activation Function -- 3.5 SoftMax Activation Function -- 3.6 GELU Activation Function -- 4 Experimentation and Implementation -- 4.1 Data -- 4.2 Design Methodology -- 5 Results and Evaluation -- 6 Conclusion -- References.
5 An Accuracy of Identifying Recyclable Objects and the Number of Objects Identified from Municipal Waste Without Occlusion Using Computer Vision Techniques -- 1 Introduction -- 2 Related Work -- 3 Proposed Work -- 4 Implementation -- 5 Result and Discussion -- 6 Conclusion -- References -- 6 A Hybrid Approach for Summarizing Text and Image Data Using ResNet and BART -- 1 Introduction -- 2 Literature Survey -- 3 Methodology -- 4 Results and Dicussion -- 5 Conclusion -- References -- 7 Epileptic Seizure Recognition System Using Neural Networks and Support Vector Machine Models -- 1 Introduction -- 2 Dataset -- 2.1 UCI Dataset -- 2.2 CHB-MIT Dataset -- 3 Survey of Existing Systems -- 4 Proposed Methodology -- 4.1 Support Vector Machine Model -- 4.2 Neural Networks Model -- 5 Results and Discussions -- 5.1 UCI -- 5.2 CHB-MIT -- 6 Conclusion -- References -- 8 Intelligent Tutoring Systems for Multidisciplinary Education -- 1 Introduction -- 1.1 Digital Pedagogy -- 1.2 Intelligent Tutoring System -- 1.3 Methodology -- 2 Pedagogy for Multidisciplinary Digital Education -- 3 Comparison of Learning Algorithms -- 3.1 Computer Programming Learning Algorithm -- 3.2 Recommender Algorithm for Philosophy Education -- 4 Analysis and Discussion -- References -- 9 A Comprehensive Study of SOMs, iSOMs, and Hybrid SOMs for Complex Data -- 1 Introduction -- 2 Literature Review -- 2.1 Self-Organizing Maps (SOM) -- 3 Comparison of SOM, iSOM and Hybrid SOM -- 4 Conclusion and Future Work -- References -- 10 Enhancing Energy Efficiency in Smart Cities Through Robust Deep Learning Frameworks -- 1 Introduction -- 1.1 Significance of Deep Learning in Smart City Energy Management -- 1.2 Challenges in Smart City Energy Management -- 1.3 Objectives and Structure -- 2 Literature Review -- 2.1 Deep Learning for Smart City Energy Management.
2.2 Data-Driven Approaches and Integrative Reviews -- 2.3 Machine Learning-Assisted Approaches -- 2.4 Wearable Sensors and Real-Time Energy Management -- 2.5 Deep Learning in Smart Buildings -- 2.6 Sustainable Transportation in Smart Cities -- 2.7 Real-Time Energy Management in Smart Homes -- 2.8 Smart Grid and Machine Learning -- 2.9 Urban Energy Management in Smart Cities -- 3 Smart City Infrastructure and Energy Management -- 3.1 Smart City Ecosystem Overview -- 3.2 Urban Energy Consumption Dynamics -- 3.3 Deep Learning for Smart City Energy Management -- 3.4 Challenges in Smart City Energy Management -- 3.5 Wearable Sensors and Data Collection -- 3.6 Data Fusion and Feature Extraction -- 3.7 Real-Time Energy Management -- 3.8 Case Studies and Real-World Experiments -- 3.9 Performance Evaluation Metrics -- 4 Deep Learning Frameworks for Smart City Energy Efficiency -- 4.1 Introduction to Deep Learning Frameworks -- 4.2 Applications of Deep Learning in Smart City Energy Management -- 4.3 Strengths and Limitations of Deep Learning Frameworks -- 4.4 Challenges and Strategies in Real-World Deployment -- 4.5 Performance Evaluation Metrics for Energy Efficiency -- 4.6 Research Directions and Future Prospects -- 5 Robustness and Resilience of Deep Learning Models -- 5.1 Introduction to Robustness and Resilience -- 5.2 Challenges in Model Robustness -- 5.3 Adaptability to Disruptions -- 5.4 Strategies for Model Robustness -- 5.5 Resilience Testing and Benchmarking -- 5.6 Ethical Considerations -- 6 Result and Analysis -- 6.1 Overview of Deep Learning Model Performance -- 6.2 Methodologies and Benchmarking Criteria -- 6.3 Comparison Table: Key Metrics Across Research Papers -- 6.4 Interpretation of Key Findings -- 7 Discussion -- 7.1 Model Interpretability -- 7.2 Ethical Considerations -- 7.3 Data Privacy -- 8 Future Research Direction.
8.1 Enhancing Model Interpretability -- 8.2 Addressing Ethical Considerations -- 8.3 Advancements in Data Privacy Techniques -- 8.4 Improving Model Robustness and Resilience -- 8.5 Interdisciplinary Collaboration -- 8.6 Validation and Benchmarking Frameworks -- 8.7 Long-Term Sustainability and Scalability -- 9 Conclusion -- References -- 11 Transformative Potential of AI and Remote Sensing in Sustainable Groundwater Management -- 1 Introduction -- 2 Groundwater Research Landscape -- 2.1 Evolution of Groundwater Research -- 2.2 Challenges in Groundwater Research -- 2.3 Traditional Research Methods -- 2.4 Emerging Technologies -- 3 The Role of Digital Technologies in Groundwater Research -- 3.1 The Role of AI in Groundwater Research -- 3.2 Remote Sensing Techniques -- 4 AI with Remote Sensing (AI-RS) Technique -- 5 Digital Twin of Groundwater Using AI-Remote Sensing Technique -- 5.1 Reduced Environmental Impact -- 5.2 Efficient Resource Management -- 5.3 Cost Savings -- 5.4 Long-Term Sustainability -- 5.5 Community and Stakeholder Engagement -- 6 Case Studies -- 7 Challenges and Future Directions -- 7.1 Data Quality and Availability -- 7.2 Data Privacy and Ethical Concerns -- 7.3 Interdisciplinary and Global Collaboration -- 7.4 Algorithm Validation and Interpretability -- 7.5 Scaling up Sustainable Technologies -- 7.6 Climate Change Adaptation -- 8 Conclusion -- References -- 12 Impact on Ocean Acidification Along the Hawaii Coastline Using Learning Algorithm -- 1 Introduction -- 2 Proposed Algorithm -- 2.1 Tuning Process -- 2.2 Correlation Map of the Proposed Work -- 3 Results and Discussions -- 4 Conclusion -- References -- 13 Smart Crop Security System Using IoT -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Analysis and Discussion -- 4 Conclusion -- 4.1 Future Scope -- References.
14 Energy Efficient Fault Tolerance System for a Reliable IoT Environment -- 1 Introduction -- 2 Related Work -- 3 Software Defined FTM for IOT -- 4 System Design -- 5 Results and Discussion -- 6 Conclusions -- References -- 15 A Novel Authentication Approach Based on Level 2 Minutiae-based Feature Extraction Using Gabor Filter -- 1 Introduction -- 1.1 Features in Fingerprint -- 1.2 Fingerprint Databases and Its Classification -- 2 Related Work -- 3 Proposed Methodology for Ridge Detection and Level 2 Feature Extraction -- 4 Experimental Results -- 5 Conclusion and Future Work -- References -- 16 A Blockchain Based Electronic Health Record Management System with PoA Consensus -- 1 Introduction -- 2 Literature Review -- 3 Proposed Blockchain Architecture -- 4 Results and Discussion -- 4.1 Decentralized Data Management -- 4.2 Proof of Authority Consensus -- 4.3 Enhanced Scalability -- 4.4 Data Security -- 4.5 Lightweight Cryptography -- 5 Conclusion -- References -- 17 Voice-Based Classification of Parkinson's Disease Using Machine Learning: An Extensive Study -- 1 Introduction -- 2 Relevant Studies -- 3 Materials and Methods -- 3.1 Dataset -- 3.2 Methods -- 4 Experimental Results -- 4.1 Accuracy and Classification Reports -- 4.2 Confusion Matrix -- 4.3 Comparison with Relevant Studies -- 5 Conclusion -- References -- 18 A Brief Perusal of Image-based Diagnosis for COVID-19 Using Image Processing Perspective -- 1 First Section -- 2 Corona Virus Disease (COVID-19) -- 2.1 Symptoms of Coronavirus -- 3 Image-based Classification Method -- 3.1 Extraction of Features -- 3.2 Parallel Implementation -- 3.3 Manta Ray Foraging Optimization (MRFO) -- 3.4 Improved MRFO with Feature Selection Based on D.E -- 4 Appraisal of the Suggested Model -- 5 Motivation -- 6 Literature Review -- 6.1 Research Trend -- 6.2 Research Gap -- 7 Comparative Analysis -- 8 Conclusion.
References.
Record Nr. UNINA-9910855381503321
Nayak Richi  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui