Algal Systems for Resource Recovery from Waste and Wastewater |
Autore | Lens Piet |
Edizione | [1st ed.] |
Pubbl/distr/stampa | London : , : IWA Publishing, , 2023 |
Descrizione fisica | 1 online resource (266 pages) |
Disciplina | 628.35 |
Altri autori (Persone) | KhandelwalAmitap |
Collana | Integrated Environmental Technology Series |
Soggetto topico |
Land treatment of wastewater
Resource recovery facilities |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Cover -- Contents -- Preface -- List of Contributors -- Part 1: Process Fundamentals -- Chapter 1 : Algal systems for resource recovery from waste and wastewater -- 1.1 Process Fundamentals -- 1.2 Algal-Based Wastewater Treatment -- 1.3 Valorization of Algal Biomass by Integrating with Different Technologies -- 1.4 Algal Biotechnology -- References -- Chapter 2 : Metabolic modelling of microalgae for wastewater treatment -- 2.1 Introduction -- 2.2 Main Metabolic Pathways -- 2.2.1 Photosynthesis -- 2.2.2 Glycolysis and pentose phosphate pathway -- 2.2.3 Tricarboxylic acid cycle -- 2.2.4 Glyoxylate shunt -- 2.2.5 Lipid biosynthesis -- 2.3 Genome-Scale Metabolic Models -- 2.4 Modelling Metabolic Networks -- 2.5 Tools for Steady-State Conditions -- 2.5.1 Elementary flux modes -- 2.5.1.1 Mathematical construction of EFMs -- 2.5.1.2 Minimal generating sets and EFM reduction -- 2.5.2 Flux balance analysis -- 2.6 Metabolic Networks Reduction -- 2.6.1 The DRUM framework -- 2.7 Case Study: Microalgae Cultivation -- 2.7.1 Introduction: volatile fatty acid -- 2.7.2 Determination of the subnetworks and accumulating metabolites -- 2.7.3 Derivation of MR -- 2.7.4 Choice of kinetic model -- 2.7.5 Model calibration and validation -- 2.7.6 Example of application: optimization of waste treatment time -- 2.8 Conclusion -- References -- Chapter 3 : Wastewater treatment using microalgal-bacterial consortia in the photo-activated sludge process -- 3.1 Microalgal-Bacterial Consortia -- 3.1.1 Use of microalgal-bacterial consortia in environmental technologies -- 3.1.2 Interactions within microalgal-bacterial consortia -- 3.1.3 Nutrient removal by microalgal-bacterial consortia -- 3.1.4 Microalgal-bacterial systems and configurations.
3.1.5 Limiting and operational conditions of microalgal-bacterial photobioreactors -- 3.1.5.1 Light -- 3.1.5.2 pH -- 3.1.5.3 Hydraulic retention time -- 3.1.5.4 Solid retention time -- 3.2 Advantages of Microalgal-Bacterial Consortia for Ammonium Removal -- 3.2.1 Advantages on ammonium removal rates -- 3.2.2 Operational conditions and area requirement -- 3.2.3 Photo-oxygenation and algal harvesting -- 3.3 Microalgal-Bacterial Modelling -- 3.4 Integration of Photoactivated Sludge in Wastewater Treatment Concepts -- 3.5 Conclusions -- References -- Chapter 4 : Macroalgae biorefinery and its role in achieving a circular economy -- 4.1 Introduction -- 4.2 Macroalgae Species -- 4.2.1 Green algae -- 4.2.2 Brown algae -- 4.2.2.1 Laminaria sp. -- 4.2.2.2 Sargassum sp. -- 4.3 Biomaterials and Bioproducts from Macroalgae -- 4.4 Biofuels from Macroalgae -- 4.4.1 Biogas -- 4.4.2 Biohydrogen -- 4.4.3 Biohythane -- 4.4.4 Bioethanol and biobutanol -- 4.4.4.1 Acetone-butanol-ethanol fermentation -- 4.4.4.2 Biobutanol -- 4.4.4.3 Bioethanol -- 4.5 Macroalgal Biorefineries -- 4.5.1 Biorefinery concepts -- 4.5.2 Key processes -- 4.5.2.1 Anaerobic digestion -- 4.5.2.2 Reactor design -- 4.5.3 Key challenges of macroalgal biorefineries -- 4.6 Conclusion -- References -- Part 2: Algae-Based Wastewater Treatment -- Chapter 5 : Wastewater treatment by microalgae-based processes -- 5.1 Introduction -- 5.2 Current Status of Microalgae-Related Wastewater Treatment Processes -- 5.2.1 Biology of microalgae-bacteria consortia -- 5.2.2 Engineering of photobioreactors -- 5.2.3 Harvesting and processing of the biomass -- 5.3 Major Challenges of Microalgae-Related Wastewater Treatment Processes -- 5.3.1 Improvement of biological systems. 5.3.2 Allocation and implementation of large-scale facilities -- 5.3.3 Optimal operation of processes -- 5.3.4 Develop valuable applications of microalgae biomass -- 5.4 Relevance of Developing Microalgae-Related Wastewater Treatment Processes -- 5.4.1 Improvement of sustainability of wastewater treatment -- 5.4.2 Distributed wastewater treatment -- 5.4.3 Reuse of effluents in agriculture -- Acknowledgements -- References -- Chapter 6 : Microalgae-methanotroph cocultures for carbon and nutrient recovery from wastewater -- 6.1 Background -- 6.2 Overview of Microalgae-Methanotroph Cocultures: A Promising W2V Platform for Wastewater Treatment -- 6.3 Experimental and Computational Tools for Real-Time Characterization of the Microalgae-Methanotroph Cocultures -- 6.3.1 Accurate measurement of gas component uptake and production rates in bioconversion -- 6.3.2 Quantitative characterization of microalgae-methanotroph cocultures -- 6.4 Semi-Structured Kinetic Modeling of the Coculture -- 6.5 Integrated Nutrient Recovery and Mitigation of Greenhouse Gas Emissions from Wastewater Using Microalgae-Methanotroph Cocultures -- 6.5.1 Choice of a suitable biocatalyst -- 6.5.2 Coculture tolerance to contaminants in raw biogas -- 6.5.3 Freshwater consumption required by wastewater treatment -- 6.5.4 Pretreatment of AD effluent -- 6.5.5 Advantage of the coculture over sequential single cultures in carbon and nutrient recovery -- 6.6 Next-Generation Photobioreactors -- 6.7 Outlook and Conclusion -- References -- Part 3: Integration with Other Technologies -- Chapter 7 : Microalgae cultivation in bio-electrochemical systems -- 7.1 Introduction -- 7.2 Use of Algae in MFCs -- 7.2.1 Algae as primary producers -- 7.2.2 Algae metabolism -- 7.2.3 Large-scale microalgae cultivation -- 7.3 Role of Algae in PMFCs. 7.3.1 Algal species tested in MFC cathode compartment -- 7.3.2 Mechanism of bioelectricity generation in PMFCs -- 7.4 PMFC Design Parameters -- 7.4.1 Dual chambers vs sediment MFCs -- 7.4.2 Construction materials, electrolytes, electrodes and separators -- 7.4.3 Electrode materials -- 7.4.4 Separators -- 7.4.5 Effect of light intensity, temperature, DO, CO 2 , pH and salts -- 7.5 Economic Importance of PMFCs -- 7.6 Future Perspectives -- References -- Chapter 8 : Integrated anaerobic digestion and algae cultivation -- 8.1 Introduction -- 8.2 Algae Cultivation from AD Residues -- 8.2.1 Liquid effluent -- 8.2.2 Digestate -- 8.3 AD as Energetic Valorization Route of Algae Biomass -- 8.3.1 AD of microalgae -- 8.3.2 Pretreatment of microalgal biomass -- 8.3.3 Anaerobic co-digestion -- 8.4 Algae Cultivation for Biogas Upgrading -- 8.5 Coupling Technologies for Sustainable Biorefineries -- 8.5.1 Biorefinery based on integrated microalgae and AD technologies -- 8.5.2 Environmental impacts of integrated microalgae and AD technologies -- 8.5.3 Insights for improving the sustainability performance of integrated microalgae and AD technologies -- 8.6 Challenges and Future Perspectives -- References -- Chapter 9 : Algae for wastewater treatment and biofuel production -- 9.1 Introduction -- 9.2 Characterization of Microalgae Grown in Wastewater for Biofuel Production -- 9.3 Biodiesel Production from Microalgae Grown in Wastewater -- 9.3.1 Biodiesel production process -- 9.3.2 Types of microalgae grown in wastewater for biodiesel production -- 9.4 Bioethanol Production from Microalgae Grown in Wastewater -- 9.4.1 Bioethanol production process -- 9.4.2 Hydrolysis -- 9.4.3 Fermentation -- 9.5 Conclusions and Perspectives -- References -- Part 4: Algal Biotechnology. Chapter 10 : Advanced value-added bioproducts from microalgae -- 10.1 Introduction -- 10.2 Market Value of Algae-Based High-Value Compounds -- 10.3 High-Value Products Used in Different Sectors -- 10.3.1 Cosmetics -- 10.3.2 Pharmaceuticals -- 10.3.3 Food supplements -- 10.3.3.1 Protein content of algae -- 10.3.3.2 Single-cell protein -- 10.3.3.3 Carbohydrates -- 10.3.3.4 Lipids -- 10.3.3.5 Vitamins -- 10.3.3.6 Minerals -- 10.3.4 Agricultural products -- 10.3.4.1 Biofertilizer/biostimulants -- 10.3.4.2 Plant growth-promoting substances/hormones -- 10.3.4.3 Biopesticides -- 10.3.5 Construction sector -- 10.4 Constraints of Algal Biomass Production and Application -- 10.5 Conclusion -- Acknowledgment -- References -- Chapter 11 : Production of biopolymers from microalgae and cyanobacteria -- 11.1 Introduction -- 11.2 Structure and Properties of Biodegradable Bioplastics -- 11.3 Employing Microalgae and Cyanobacteria for Bioplastic Production -- 11.3.1 Cultivation conditions -- 11.3.1.1 Photoautotrophic, heterotrophic, or mixotrophic operational mode -- 11.3.1.2 Nutrient availability -- 11.3.1.3 Light -- 11.3.1.4 Wastewater as a feedstock for microalgae and cyanobacteria cultivation -- 11.3.2 Advantages of PHA production from microalgae and cyanobacteria compared to bacteria -- 11.3.3 PHA blends -- 11.3.3.1 PHA blends with raw materials -- 11.3.3.2 PHA blends with biodegradable polymers -- 11.4 Downstream Processing of Bioplastic Recovery from Microalgae and Cyanobacteria -- 11.4.1 Harvesting -- 11.4.1.1 Centrifugation -- 11.4.1.2 Filtration -- 11.4.1.3 Flocculation and coagulation -- 11.4.1.4 Gravity sedimentation -- 11.4.1.5 Flotation -- 11.4.2 Drying -- 11.4.3 Extraction -- 11.5 Challenges and Future Perspectives. 11.6 Conclusion. |
Record Nr. | UNINA-9910768495103321 |
Lens Piet | ||
London : , : IWA Publishing, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Algal Systems for Resource Recovery from Waste and Wastewater / Piet N.L. Lens, Amitap Khandelwal |
Pubbl/distr/stampa | United Kingdom : , : IWA Publishing, , 2023 |
Descrizione fisica | 1 online resource (266 p.) |
Collana | Integrated Environmental Technology Series |
Soggetto topico |
Technology & Engineering / Mining
Science / Applied Sciences Science / Environmental Science Science |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910832983803321 |
United Kingdom : , : IWA Publishing, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|