top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applied Matrix Acidizing of Carbonate Reservoir
Applied Matrix Acidizing of Carbonate Reservoir
Autore Khamehchi Ehsan
Edizione [1st ed.]
Pubbl/distr/stampa Cham : , : Springer, , 2024
Descrizione fisica 1 online resource (229 pages)
Altri autori (Persone) KhaleghiMohammad Reza
AbbasiAmirhossein
Mahdavi KalatehnoJavad
Collana Petroleum Engineering Series
ISBN 9783031582813
9783031582806
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Abbreviations -- List of Figures -- List of Tables -- 1 Basic Objectives and Concepts of Matrix Acidizing -- 1.1 Introduction -- 1.2 Formation Damage -- 1.3 Types of Damage Formation Damage -- 1.3.1 Natural Damage -- 1.3.2 Induced Damage -- 1.4 Formation Damage Assessment Comprehensive Considerations -- 1.4.1 Reservoir Geology and Mineralogy -- 1.4.2 Reservoir Fluids -- 1.4.3 Production of Nearby Wells -- 1.4.4 Well Production History -- 1.4.5 Drilling History -- 1.4.6 Cementing Program -- 1.4.7 Well Completion and Perforation Reports -- 1.4.8 History of the Well Workover -- 1.4.9 Well Acidizing and Stimulation History -- 1.5 Types of Formation Stimulation Methods -- 1.5.1 Acidizing -- 1.5.2 Fracturing -- 1.5.3 Thermal Stimulation -- 1.6 Objectives of Matrix Acidizing -- 1.6.1 Improving Well Productivity -- 1.6.2 Enhancing Reservoir Performance -- 1.6.3 Restoring Formation Permeability -- 1.6.4 Economic Considerations -- 1.7 Carbonate Reservoirs -- 1.7.1 The Composition and Characteristics of Carbonate Reservoirs -- 1.8 Acid-Rock Interactions -- 1.9 Types of Acids in Acidizing -- 1.9.1 Mineral Acids -- 1.9.2 Organic Acid -- 1.9.3 Mixed Acid -- 1.10 Reservoir Permeability and Porosity -- 1.11 Factors Affecting Acidizing Success in Carbonate Reservoirs -- 1.12 Parameters Affecting Acidizing Operation -- 1.13 Matrix Acidizing of Carbonate Formations -- 1.14 Field Applications -- 1.15 Questions -- References -- 2 Estimating the Formation Fracture Pressure Through Geomechanical Modeling -- 2.1 Introduction -- 2.2 Elasticity Parameters -- 2.2.1 Stress -- 2.2.2 Strain -- 2.2.3 Stress and Strain Relationship -- 2.3 Uniaxial Compressive Strength -- 2.4 Pore Pressure -- 2.5 Estimation of the Magnitude of the Main Stresses in Place -- 2.5.1 Vertical Tension (σV) -- 2.5.2 The Minimum Horizontal Stress (h).
2.5.3 Maximum Horizontal Stress (H) -- 2.6 Determining the Direction of the Main Stresses in Place -- 2.7 Image Logs (FMI) -- 2.8 Elastic Moduli -- 2.9 Construction of Geomechanical Model -- 2.9.1 Determination of Elastic Constants -- 2.9.2 Static Elastic Moduli -- 2.9.3 Estimation of Rock Resistance Parameters -- 2.9.4 Overburden Stress -- 2.9.5 Horizontal In-Situ Stresses -- 2.9.6 Biot Coefficient -- 2.9.7 In-Situ Stress Regime -- 2.9.8 Estimation of Temperature Conditions -- 2.10 Questions -- References -- 3 Static and Dynamic Tests -- 3.1 Introduction -- 3.2 Experiment Design -- 3.3 Investigating Influencial Parameters -- 3.3.1 Choosing the Type of Acid -- 3.3.2 Concentration -- 3.3.3 Rock to Acid Ratio -- 3.3.4 Time -- 3.4 Rotary Disk Reactor -- 3.4.1 Rotating Disk Theory -- 3.4.2 How to Work -- 3.4.3 Effect of Rock Porosity -- 3.4.4 Rock Mineralogical Effect -- 3.4.5 Effect of Additives on Reaction Rate -- 3.5 Hydrochloric Acid -- 3.5.1 Stoichiometry, Kinetics, and Equilibrium Constant -- 3.5.2 Determination of Time and Ratio of Rock to Acid -- 3.5.3 Determining the Optimum Concentration -- 3.6 Hydrochloric Acid and Methanol -- 3.6.1 Dissolution Test -- 3.7 13% Acetic Acid Dissolution Test -- 3.7.1 Acetic Acid pH at 13% -- 3.8 Determination of the Optimum Time and Volume Ratio of Hydrochloric Acid to Acetic Acid -- 3.8.1 Dissolution Test -- 3.8.2 pH -- 3.9 Viscosity Increasing Fluids -- 3.10 Comparison of Selected Solutions -- 3.11 Perform Surface Tension and Contact Angle Tests -- 3.11.1 Introduction -- 3.11.2 Acidizing Additives -- 3.12 Guidelines for Laboratory Evaluation of Acidizing Additives -- 3.12.1 Compatibility Testing -- 3.12.2 Test Method -- 3.12.3 Iron Reducing Agent -- 3.12.4 Additive Evaluation for Removing Hydrogen Sulfide Gas -- 3.12.5 Evaluation of Suspending Agent -- 3.12.6 Anti Sludge Evaluation.
3.12.7 Evaluation of Non-emulsifiers -- 3.12.8 Acid Corrosion Inhibitor and Intensifier Evaluation -- 3.12.9 Review of Surface Tension Reducer -- 3.12.10 Experiment to Determine the Optimal Concentration of Mutual Solvent Additive in the Pre-injection Fluid -- 3.12.11 Emulsifier Agent Acid Additive Evaluation -- 3.12.12 Evaluation of Clay Stabilizer -- 3.12.13 Viscoelastic Evaluation of Surfactant -- 3.12.14 Foaming Agent Evaluation -- 3.12.15 Hydrochloric Acid Evaluation -- 3.12.16 Acetic Acid Evaluation -- 3.12.17 Evaluation of Ammonium Bifluoride (ABF) -- 3.12.18 Benzoic Acid Evaluation -- 3.12.19 Asphaltene Solvent Evaluation -- 3.13 Coreflood Tests -- 3.13.1 Introduction -- 3.14 Coreflood with Acid -- 3.14.1 Matrix Acidizing Test Details -- 3.14.2 Matrix Acidizing Method -- 3.14.3 Acid Preparation -- 3.14.4 Determining the Optimal Flow Rate -- 3.14.5 Coreflood Test Steps -- 3.15 Questions -- References -- 4 Analyzing and Contrasting Laboratory Results with Commercial Software -- 4.1 Introduction -- 4.2 Required Information -- 4.3 Test Design Method in Software -- 4.3.1 Rationale Behind the Selection of Experiment Design Levels -- 4.4 Selecting the Rate and Volume of Acid Injection -- 4.5 Discussion -- 4.5.1 Optimal Acid Selection -- 4.5.2 Information and Outcomes from the Software -- 4.6 Questions -- 5 Economic Evaluation and Estimation -- 5.1 Introduction -- 5.2 Economic Calculations -- 5.2.1 Essential Costs for Acidizing -- 5.2.2 Flow Rate Changes After Acidizing -- 5.2.3 Estimation of Costs and Profits Resulting from Acidizing -- 5.3 Fold of Increase (FOI) -- 5.3.1 Maximize NPV Through Informed Decisions -- References.
Record Nr. UNINA-9910865233603321
Khamehchi Ehsan  
Cham : , : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Gas Allocation Optimization Methods in Artificial Gas Lift / / by Ehsan Khamehchi, Mohammad Reza Mahdiani
Gas Allocation Optimization Methods in Artificial Gas Lift / / by Ehsan Khamehchi, Mohammad Reza Mahdiani
Autore Khamehchi Ehsan
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (XII, 46 p. 21 illus.)
Disciplina 622.3382
Collana SpringerBriefs in Petroleum Geoscience & Engineering
Soggetto topico Fossil fuels
Geophysics
Geotechnical engineering
Computational intelligence
Fossil Fuels (incl. Carbon Capture)
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Computational Intelligence
ISBN 3-319-51451-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction -- 2. The Fitness Function of Gas Allocation Optimization -- 3. Constraint Optimization -- 4. Optimization Algorithms.
Record Nr. UNINA-9910158707403321
Khamehchi Ehsan  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui