Liouville-Riemann-Roch theorems on Abelian coverings / / Minh Kha, Peter Kuchment
| Liouville-Riemann-Roch theorems on Abelian coverings / / Minh Kha, Peter Kuchment |
| Autore | Kha Minh |
| Edizione | [1st ed. 2021.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (XII, 96 p. 2 illus., 1 illus. in color.) |
| Disciplina | 515.353 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico |
Differential equations, Elliptic
Riemann-Roch theorems |
| ISBN | 3-030-67428-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preliminaries -- The Main Results -- Proofs of the Main Results -- Specific Examples of Liouville-Riemann-Roch Theorems -- Auxiliary Statements and Proofs of Technical Lemmas -- Final Remarks and Conclusions. |
| Record Nr. | UNINA-9910483825303321 |
Kha Minh
|
||
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Liouville-Riemann-Roch theorems on Abelian coverings / / Minh Kha, Peter Kuchment
| Liouville-Riemann-Roch theorems on Abelian coverings / / Minh Kha, Peter Kuchment |
| Autore | Kha Minh |
| Edizione | [1st ed. 2021.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (XII, 96 p. 2 illus., 1 illus. in color.) |
| Disciplina | 515.353 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico |
Differential equations, Elliptic
Riemann-Roch theorems |
| ISBN | 3-030-67428-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preliminaries -- The Main Results -- Proofs of the Main Results -- Specific Examples of Liouville-Riemann-Roch Theorems -- Auxiliary Statements and Proofs of Technical Lemmas -- Final Remarks and Conclusions. |
| Record Nr. | UNISA-996466549803316 |
Kha Minh
|
||
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||