top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applied multidimensional geological modeling : informing sustainable human interactions with the shallow subsurface / / edited by Alan Keith Turner, Holger Kessler, Michiel J. van der Meulen
Applied multidimensional geological modeling : informing sustainable human interactions with the shallow subsurface / / edited by Alan Keith Turner, Holger Kessler, Michiel J. van der Meulen
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc., , [2021]
Descrizione fisica 1 online resource (675 pages)
Disciplina 550.113
Soggetto topico Geological modeling - Simulation methods
Geological surveys - Simulation methods
Soggetto genere / forma Electronic books.
ISBN 1-119-16311-0
1-119-16310-2
1-119-16309-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Acknowledgments -- Part I Introduction and Background -- Chapter 1 Introduction to Modeling Terminology and Concepts -- 1.1 Mapping or Modeling - Which Is Correct? -- 1.1.1 Definition of the Term "Model" -- 1.1.2 Evolution of the Geological Model Concept -- 1.2 Why Use "Multidimensional"? -- 1.3 Evolution of Digital Geological Modeling -- 1.4 Overview of the Book -- 1.4.1 Intended Audience -- 1.4.2 Part I: Introduction and Background -- 1.4.3 Part II: Building and Managing Models -- 1.4.3.1 Technical Considerations - Chapters 5-8 -- 1.4.3.2 Alternative Model Building Approaches - Chapters 9-12 -- 1.4.3.3 Model Application and Evaluation - Chapters 13-15 -- 1.4.4 Part III: Using and Disseminating Models -- 1.4.5 Part IV: Case Studies -- 1.4.6 Part V: Future Possibilities and Challenges -- References -- Chapter 2 Geological Survey Data and the Move from 2-D to 4-D -- 2.1 Introduction -- 2.2 The Role of Geological Survey Organizations -- 2.2.1 Establishment of Geological Surveys -- 2.2.2 Systematic versus Strategic Mapping Approaches -- 2.2.3 Geological Mapping by Geological Surveys -- 2.2.4 Difficulty in Maintaining Adequate Financial Support -- 2.3 Challenges Facing Geological Survey Organizations -- 2.4 A Geological Map is Not a Piece of Paper -- 2.4.1 Early Geological Maps -- 2.4.2 Early Digital Mapping and Modeling -- 2.4.3 Advantages of Digital Mapping -- 2.5 The Importance of Effective Data Management -- 2.6 The Challenges of Parameterization - Putting Numbers on the Geology -- 2.6.1 Parameterization of Geological Models -- 2.6.2 Model Scale -- 2.6.3 Parameter Heterogeneity -- 2.6.4 Model Uncertainty -- 2.7 Use of 3‐D Geological Models with Process Models -- 2.8 The Evolving Mission of the Geological Survey of the Netherlands.
2.9 Experience With a Multiagency and Multijurisdictional Approach to 3‐D Mapping in the Great Lakes Region -- 2.10 Conclusions -- References -- Chapter 3 Legislation, Regulation, and Management -- 3.1 Introduction -- 3.2 Layers of the Subsurface -- 3.3 Legal Systems -- 3.4 Land Ownership -- 3.5 Regulation and Management -- 3.5.1 Ground Investigation -- 3.5.2 Spatial Planning -- 3.5.3 Natural Resources -- 3.5.4 Environmental and Cultural Issues -- 3.6 Approaches to Subsurface Development -- 3.6.1 Existing Spaces -- 3.6.2 New Developments -- 3.7 Involving Stakeholders -- 3.8 Delivery of Information -- 3.9 The Role of 3‐D Subsurface Models -- 3.10 Conclusions -- References -- Chapter 4 The Economic Case for Establishing Subsurface Ground Conditions and the Use of Geological Models -- 4.1 Introduction -- 4.2 The Nature of Geotechnical Investigations -- 4.2.1 Geotechnical Investigations for Management of Geotechnical Risk -- 4.2.2 How Geological Models Sit Within the Geotechnical Investigation Process -- 4.2.3 Potential Impact of Geotechnical Risks -- 4.3 Benefits of Using 3‐D Models and Establishing Subsurface Ground Conditions -- 4.3.1 Cost of Geotechnical Investigations -- 4.3.2 Geotechnical Baseline Report -- 4.4 Processes, Codes, and Guidelines for Establishing Subsurface Conditions and Managing Risk -- 4.4.1 Risk Reduction Strategies to Manage Deficient Ground Information -- 4.4.2 Investments to Mitigate Against Deficient Ground Information -- 4.4.3 Code Requirements -- 4.5 Examples of the Use of 3‐D Geological Models for Infrastructure Projects -- 4.5.1 Investigating Three‐Dimensional Geological Modeling as a Tool for Consultancy -- 4.5.2 Three‐Dimensional Geological Modeling for a Nuclear Power Facility in Anglesey, Wales, UK, to Enhance Ground Investigation Quality and Optimize Value.
4.5.3 Integrating 3‐D Models Within Project Workflow to Control Geotechnical Risk -- 4.5.4 The Economic Value of Digital Ground Models for Linear Rail Infrastructure Assets in the United Kingdom -- 4.5.5 Employing an Integrated 3‐D Geological Model for the Reference Design of the Silvertown Tunnel, East London -- 4.5.6 A New Dutch Law on Subsurface Information to Enable Better Spatial Planning -- Acknowledgments -- References -- Part II Building and Managing Models -- Chapter 5 Overview and History of 3‐D Modeling Approaches -- 5.1 Introduction -- 5.2 Historical Development of 3‐D Modeling -- 5.2.1 Representation of the Third Dimension -- 5.2.2 Electrical Analog Models -- 5.2.3 The Adoption of Digital Mapping Technologies -- 5.2.4 Evolution of 3‐D Mapping and Modeling Collaborative Forums -- 5.3 The Mahomet Aquifer: An Example of Evolving Subsurface Modeling -- 5.3.1 Early Modeling Efforts -- 5.3.2 Initial 3‐D Geological and Hydrogeological Evaluations -- 5.3.3 Recent Geological and Hydrogeological Models -- 5.4 Digital 3‐D Geological Modeling Approaches Discussed in This Book -- 5.4.1 Stacked‐Surface Approach to Model Creation -- 5.4.2 Modeling Based on Cross‐Sections and Boreholes -- 5.4.3 Three‐Dimensional Gridded Voxel Models -- 5.4.4 Integrated Rule‐Based (Implicit) Geological Models -- References -- Chapter 6 Effective and Efficient Workflows -- 6.1 Introduction -- 6.1.1 Understanding the Geologic Modeling Process -- 6.1.2 Developing Custom Workflows -- 6.2 Operational Considerations -- 6.2.1 User Requirements -- 6.2.2 Defining Mapping Objectives -- 6.2.2.1 Delineation of Model Domain -- 6.2.2.2 Definition of the General Geologic Framework Model -- 6.2.2.3 Determination and Representation of the Desired Model Accuracy -- 6.2.2.4 Consideration of Formats for Final Deliverables -- 6.2.3 Geologic Setting and Natural Complexity.
6.2.4 Existing Data Availability and Management -- 6.2.5 Collection of New Data -- 6.2.6 Staff Availability and Expertise -- 6.3 Selection of Modeling Methods and Software -- 6.4 Products and Distribution -- 6.5 Model Maintenance and Upgrades -- 6.6 Illinois State Geological Survey 3‐D Modeling Workflows -- 6.6.1 Project Objectives -- 6.6.2 Project Schedule -- 6.6.3 Project Staffing Considerations -- 6.6.4 Software Selection -- 6.6.5 Data Assessment -- 6.6.6 Project Deliverables -- 6.6.7 Post‐Project Model Management -- 6.7 Modeling Workflow Solutions by Other Organizations -- 6.7.1 University of Waterloo, Department of Earth and Environmental Sciences -- 6.7.2 Delaware Geological Survey -- 6.7.3 Ontario Geological Survey -- 6.7.4 Geological Survey of Denmark and Greenland -- 6.8 Creating a Custom Workflow -- Acknowledgments -- References -- Chapter 7 Data Sources for Building Geological Models -- 7.1 Introduction -- 7.2 Defining and Classifying Data -- 7.2.1 Data Versus Information -- 7.2.2 Classifying Data -- 7.2.2.1 Spatial Location and Extent Using Points, Lines, and Polygons -- 7.2.2.2 Framework Versus Property Data -- 7.2.2.3 Elevation, Surficial, and Subsurface Data -- 7.3 Legacy Data -- 7.4 Elevation Data -- 7.5 Surficial and Subsurface Geological Data -- 7.5.1 Geological Survey Data -- 7.5.1.1 Map Data -- 7.5.1.2 Boreholes -- 7.5.1.3 Analytical Databases -- 7.5.1.4 Reports and Academic Contributions -- 7.5.1.5 3‐D Models -- 7.5.1.6 Accessibility -- 7.5.2 Soil Data -- 7.5.3 Geotechnical Data -- 7.5.4 Water Well Data -- 7.5.5 Petroleum Data -- 7.6 Geophysical Data -- 7.6.1 Seismic Survey Method -- 7.6.1.1 Seismic Refraction Surveys -- 7.6.1.2 Seismic Reflection Surveys -- 7.6.1.3 Surface Wave Surveys -- 7.6.2 Resistivity Survey Method -- 7.6.3 Electromagnetic Survey Method -- 7.6.3.1 Time Domain Electromagnetic Surveys (TDEM).
7.6.3.2 Frequency Domain Electromagnetic Surveys -- 7.6.3.3 Airborne Electromagnetic Surveys -- 7.6.4 Gravity Surveys -- 7.6.4.1 Ground‐based Gravity Surveys -- 7.6.4.2 Airborne Gravity Surveys -- 7.6.5 Ground Penetrating Radar -- 7.6.6 Borehole Geophysics -- 7.6.6.1 Borehole Geophysical Logging -- 7.6.6.2 In‐hole Seismic Geophysical Logging -- Acknowledgments -- References -- Chapter 8 Data Management Considerations -- 8.1 Introduction -- 8.2 Data Management Methods -- 8.2.1 Standards and Best Practice -- 8.2.2 The Database System -- 8.2.3 Data Modeling -- 8.2.4 Relational Databases -- 8.2.5 Entity‐Relationship Diagrams -- 8.2.6 Normalization Process -- 8.2.7 Denormalization Process -- 8.2.8 Extract, Transform, Load (ETL) Processes -- 8.2.9 Data Warehousing -- 8.2.10 The Important Role of Metadata -- 8.3 Managing Source Data for Modeling -- 8.3.1 Data from Multiple Data Sources -- 8.3.2 Managing the Connectivity among Data Sources -- 8.3.3 Facilitating Sharing of Database Designs -- 8.4 Managing Geological Framework Models -- 8.4.1 BGS Model Database Design Principles -- 8.4.2 Versioning Existing Models -- 8.4.3 Creating New Models Based on Existing Models - "Model Interoperability" -- 8.5 Managing Geological Properties Data and Property Models -- 8.5.1 Characteristics of Property Data Sources and Models -- 8.5.2 Applications within the British Geological Survey -- 8.6 Managing Process Models -- 8.7 Integrated Data Management in the Danish National Groundwater Mapping Program -- 8.8 Transboundary Modeling -- 8.8.1 The H3O Program: Toward Consistency of 3‐D Hydrogeological Models Across the Dutch‐Belgian and Dutch‐German Borders -- 8.8.2 The Polish-German TransGeoTherm Project -- 8.8.3 The GeoMol Project -- Acknowledgments -- References -- Chapter 9 Model Creation Using Stacked Surfaces -- 9.1 Introduction -- 9.2 Rationale for Using Stacked Surfaces.
9.3 Software Functionality to Support Stacked‐Surface Modeling.
Record Nr. UNINA-9910555046403321
Hoboken, NJ : , : John Wiley & Sons, Inc., , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Applied multidimensional geological modeling : informing sustainable human interactions with the shallow subsurface / / edited by Alan Keith Turner, Holger Kessler, Michiel J. van der Meulen
Applied multidimensional geological modeling : informing sustainable human interactions with the shallow subsurface / / edited by Alan Keith Turner, Holger Kessler, Michiel J. van der Meulen
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc., , [2021]
Descrizione fisica 1 online resource (675 pages)
Disciplina 550.113
Soggetto topico Geological modeling - Simulation methods
Geological surveys - Simulation methods
ISBN 1-119-16311-0
1-119-16310-2
1-119-16309-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Acknowledgments -- Part I Introduction and Background -- Chapter 1 Introduction to Modeling Terminology and Concepts -- 1.1 Mapping or Modeling - Which Is Correct? -- 1.1.1 Definition of the Term "Model" -- 1.1.2 Evolution of the Geological Model Concept -- 1.2 Why Use "Multidimensional"? -- 1.3 Evolution of Digital Geological Modeling -- 1.4 Overview of the Book -- 1.4.1 Intended Audience -- 1.4.2 Part I: Introduction and Background -- 1.4.3 Part II: Building and Managing Models -- 1.4.3.1 Technical Considerations - Chapters 5-8 -- 1.4.3.2 Alternative Model Building Approaches - Chapters 9-12 -- 1.4.3.3 Model Application and Evaluation - Chapters 13-15 -- 1.4.4 Part III: Using and Disseminating Models -- 1.4.5 Part IV: Case Studies -- 1.4.6 Part V: Future Possibilities and Challenges -- References -- Chapter 2 Geological Survey Data and the Move from 2-D to 4-D -- 2.1 Introduction -- 2.2 The Role of Geological Survey Organizations -- 2.2.1 Establishment of Geological Surveys -- 2.2.2 Systematic versus Strategic Mapping Approaches -- 2.2.3 Geological Mapping by Geological Surveys -- 2.2.4 Difficulty in Maintaining Adequate Financial Support -- 2.3 Challenges Facing Geological Survey Organizations -- 2.4 A Geological Map is Not a Piece of Paper -- 2.4.1 Early Geological Maps -- 2.4.2 Early Digital Mapping and Modeling -- 2.4.3 Advantages of Digital Mapping -- 2.5 The Importance of Effective Data Management -- 2.6 The Challenges of Parameterization - Putting Numbers on the Geology -- 2.6.1 Parameterization of Geological Models -- 2.6.2 Model Scale -- 2.6.3 Parameter Heterogeneity -- 2.6.4 Model Uncertainty -- 2.7 Use of 3‐D Geological Models with Process Models -- 2.8 The Evolving Mission of the Geological Survey of the Netherlands.
2.9 Experience With a Multiagency and Multijurisdictional Approach to 3‐D Mapping in the Great Lakes Region -- 2.10 Conclusions -- References -- Chapter 3 Legislation, Regulation, and Management -- 3.1 Introduction -- 3.2 Layers of the Subsurface -- 3.3 Legal Systems -- 3.4 Land Ownership -- 3.5 Regulation and Management -- 3.5.1 Ground Investigation -- 3.5.2 Spatial Planning -- 3.5.3 Natural Resources -- 3.5.4 Environmental and Cultural Issues -- 3.6 Approaches to Subsurface Development -- 3.6.1 Existing Spaces -- 3.6.2 New Developments -- 3.7 Involving Stakeholders -- 3.8 Delivery of Information -- 3.9 The Role of 3‐D Subsurface Models -- 3.10 Conclusions -- References -- Chapter 4 The Economic Case for Establishing Subsurface Ground Conditions and the Use of Geological Models -- 4.1 Introduction -- 4.2 The Nature of Geotechnical Investigations -- 4.2.1 Geotechnical Investigations for Management of Geotechnical Risk -- 4.2.2 How Geological Models Sit Within the Geotechnical Investigation Process -- 4.2.3 Potential Impact of Geotechnical Risks -- 4.3 Benefits of Using 3‐D Models and Establishing Subsurface Ground Conditions -- 4.3.1 Cost of Geotechnical Investigations -- 4.3.2 Geotechnical Baseline Report -- 4.4 Processes, Codes, and Guidelines for Establishing Subsurface Conditions and Managing Risk -- 4.4.1 Risk Reduction Strategies to Manage Deficient Ground Information -- 4.4.2 Investments to Mitigate Against Deficient Ground Information -- 4.4.3 Code Requirements -- 4.5 Examples of the Use of 3‐D Geological Models for Infrastructure Projects -- 4.5.1 Investigating Three‐Dimensional Geological Modeling as a Tool for Consultancy -- 4.5.2 Three‐Dimensional Geological Modeling for a Nuclear Power Facility in Anglesey, Wales, UK, to Enhance Ground Investigation Quality and Optimize Value.
4.5.3 Integrating 3‐D Models Within Project Workflow to Control Geotechnical Risk -- 4.5.4 The Economic Value of Digital Ground Models for Linear Rail Infrastructure Assets in the United Kingdom -- 4.5.5 Employing an Integrated 3‐D Geological Model for the Reference Design of the Silvertown Tunnel, East London -- 4.5.6 A New Dutch Law on Subsurface Information to Enable Better Spatial Planning -- Acknowledgments -- References -- Part II Building and Managing Models -- Chapter 5 Overview and History of 3‐D Modeling Approaches -- 5.1 Introduction -- 5.2 Historical Development of 3‐D Modeling -- 5.2.1 Representation of the Third Dimension -- 5.2.2 Electrical Analog Models -- 5.2.3 The Adoption of Digital Mapping Technologies -- 5.2.4 Evolution of 3‐D Mapping and Modeling Collaborative Forums -- 5.3 The Mahomet Aquifer: An Example of Evolving Subsurface Modeling -- 5.3.1 Early Modeling Efforts -- 5.3.2 Initial 3‐D Geological and Hydrogeological Evaluations -- 5.3.3 Recent Geological and Hydrogeological Models -- 5.4 Digital 3‐D Geological Modeling Approaches Discussed in This Book -- 5.4.1 Stacked‐Surface Approach to Model Creation -- 5.4.2 Modeling Based on Cross‐Sections and Boreholes -- 5.4.3 Three‐Dimensional Gridded Voxel Models -- 5.4.4 Integrated Rule‐Based (Implicit) Geological Models -- References -- Chapter 6 Effective and Efficient Workflows -- 6.1 Introduction -- 6.1.1 Understanding the Geologic Modeling Process -- 6.1.2 Developing Custom Workflows -- 6.2 Operational Considerations -- 6.2.1 User Requirements -- 6.2.2 Defining Mapping Objectives -- 6.2.2.1 Delineation of Model Domain -- 6.2.2.2 Definition of the General Geologic Framework Model -- 6.2.2.3 Determination and Representation of the Desired Model Accuracy -- 6.2.2.4 Consideration of Formats for Final Deliverables -- 6.2.3 Geologic Setting and Natural Complexity.
6.2.4 Existing Data Availability and Management -- 6.2.5 Collection of New Data -- 6.2.6 Staff Availability and Expertise -- 6.3 Selection of Modeling Methods and Software -- 6.4 Products and Distribution -- 6.5 Model Maintenance and Upgrades -- 6.6 Illinois State Geological Survey 3‐D Modeling Workflows -- 6.6.1 Project Objectives -- 6.6.2 Project Schedule -- 6.6.3 Project Staffing Considerations -- 6.6.4 Software Selection -- 6.6.5 Data Assessment -- 6.6.6 Project Deliverables -- 6.6.7 Post‐Project Model Management -- 6.7 Modeling Workflow Solutions by Other Organizations -- 6.7.1 University of Waterloo, Department of Earth and Environmental Sciences -- 6.7.2 Delaware Geological Survey -- 6.7.3 Ontario Geological Survey -- 6.7.4 Geological Survey of Denmark and Greenland -- 6.8 Creating a Custom Workflow -- Acknowledgments -- References -- Chapter 7 Data Sources for Building Geological Models -- 7.1 Introduction -- 7.2 Defining and Classifying Data -- 7.2.1 Data Versus Information -- 7.2.2 Classifying Data -- 7.2.2.1 Spatial Location and Extent Using Points, Lines, and Polygons -- 7.2.2.2 Framework Versus Property Data -- 7.2.2.3 Elevation, Surficial, and Subsurface Data -- 7.3 Legacy Data -- 7.4 Elevation Data -- 7.5 Surficial and Subsurface Geological Data -- 7.5.1 Geological Survey Data -- 7.5.1.1 Map Data -- 7.5.1.2 Boreholes -- 7.5.1.3 Analytical Databases -- 7.5.1.4 Reports and Academic Contributions -- 7.5.1.5 3‐D Models -- 7.5.1.6 Accessibility -- 7.5.2 Soil Data -- 7.5.3 Geotechnical Data -- 7.5.4 Water Well Data -- 7.5.5 Petroleum Data -- 7.6 Geophysical Data -- 7.6.1 Seismic Survey Method -- 7.6.1.1 Seismic Refraction Surveys -- 7.6.1.2 Seismic Reflection Surveys -- 7.6.1.3 Surface Wave Surveys -- 7.6.2 Resistivity Survey Method -- 7.6.3 Electromagnetic Survey Method -- 7.6.3.1 Time Domain Electromagnetic Surveys (TDEM).
7.6.3.2 Frequency Domain Electromagnetic Surveys -- 7.6.3.3 Airborne Electromagnetic Surveys -- 7.6.4 Gravity Surveys -- 7.6.4.1 Ground‐based Gravity Surveys -- 7.6.4.2 Airborne Gravity Surveys -- 7.6.5 Ground Penetrating Radar -- 7.6.6 Borehole Geophysics -- 7.6.6.1 Borehole Geophysical Logging -- 7.6.6.2 In‐hole Seismic Geophysical Logging -- Acknowledgments -- References -- Chapter 8 Data Management Considerations -- 8.1 Introduction -- 8.2 Data Management Methods -- 8.2.1 Standards and Best Practice -- 8.2.2 The Database System -- 8.2.3 Data Modeling -- 8.2.4 Relational Databases -- 8.2.5 Entity‐Relationship Diagrams -- 8.2.6 Normalization Process -- 8.2.7 Denormalization Process -- 8.2.8 Extract, Transform, Load (ETL) Processes -- 8.2.9 Data Warehousing -- 8.2.10 The Important Role of Metadata -- 8.3 Managing Source Data for Modeling -- 8.3.1 Data from Multiple Data Sources -- 8.3.2 Managing the Connectivity among Data Sources -- 8.3.3 Facilitating Sharing of Database Designs -- 8.4 Managing Geological Framework Models -- 8.4.1 BGS Model Database Design Principles -- 8.4.2 Versioning Existing Models -- 8.4.3 Creating New Models Based on Existing Models - "Model Interoperability" -- 8.5 Managing Geological Properties Data and Property Models -- 8.5.1 Characteristics of Property Data Sources and Models -- 8.5.2 Applications within the British Geological Survey -- 8.6 Managing Process Models -- 8.7 Integrated Data Management in the Danish National Groundwater Mapping Program -- 8.8 Transboundary Modeling -- 8.8.1 The H3O Program: Toward Consistency of 3‐D Hydrogeological Models Across the Dutch‐Belgian and Dutch‐German Borders -- 8.8.2 The Polish-German TransGeoTherm Project -- 8.8.3 The GeoMol Project -- Acknowledgments -- References -- Chapter 9 Model Creation Using Stacked Surfaces -- 9.1 Introduction -- 9.2 Rationale for Using Stacked Surfaces.
9.3 Software Functionality to Support Stacked‐Surface Modeling.
Record Nr. UNINA-9910830813403321
Hoboken, NJ : , : John Wiley & Sons, Inc., , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui