top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Benzimidazole / / edited by Pravin Kendrekar, Vinayak Adimule
Benzimidazole / / edited by Pravin Kendrekar, Vinayak Adimule
Pubbl/distr/stampa London : , : IntechOpen, , 2022
Descrizione fisica 1 online resource (162 pages)
Disciplina 547.593
Collana Biochemistry
Soggetto topico Benzimidazoles
ISBN 1-80355-121-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Advances of Benzimidazole Derivatives as Anticancer Agents: Bench to Bedside -- 2. The Anticancer Profile of Benzimidazolium Salts and Their Metal Complexes -- 3. Benzimidazole: Pharmacological Profile -- 4. Exploring the Versatility of Benzimidazole Scaffolds as Medicinal Agents: A Brief Update -- -- 5. Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety -- 6. Spectral and Theoretical Studies of Benzimidazole and 2-Phenyl Substituted Benzimidazoles.
Record Nr. UNINA-9910633979803321
London : , : IntechOpen, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Benzimidazole / / edited by Pravin Kendrekar and Vinayak Adimule
Benzimidazole / / edited by Pravin Kendrekar and Vinayak Adimule
Pubbl/distr/stampa London : , : IntechOpen, , 2022
Descrizione fisica 1 online resource (xiii, 162 pages) : illustrations
Disciplina 547.593
Collana Biochemistry,
Soggetto topico Benzimidazoles
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Advances of Benzimidazole Derivatives as Anticancer Agents: Bench to Bedside -- 2. The Anticancer Profile of Benzimidazolium Salts and Their Metal Complexes -- 3. Benzimidazole: Pharmacological Profile -- 4. Exploring the Versatility of Benzimidazole Scaffolds as Medicinal Agents: A Brief Update -- 5. Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety -- 6. Spectral and Theoretical Studies of Benzimidazole and 2-Phenyl Substituted Benzimidazoles.
Record Nr. UNINA-9910688190803321
London : , : IntechOpen, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Drug and therapy development for triple negative breast cancer / / edited by Pravin Kendrekar, Vinayak Adimule, and Tara Hurst
Drug and therapy development for triple negative breast cancer / / edited by Pravin Kendrekar, Vinayak Adimule, and Tara Hurst
Pubbl/distr/stampa Weinheim, Germany : , : WILEY-VCH GmbH, , [2023]
Descrizione fisica 1 online resource (323 pages)
Disciplina 016.22
Soggetto topico Breast - Cancer - Treatment
ISBN 3-527-84116-4
3-527-84118-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Title Page -- Contents -- Preface -- Part I History of Breast Cancer -- 1 Early-Stage Diagnosis of Breast Cancer: Amelioration in Approaches -- 1.1 Introduction -- 1.2 Imaging Techniques -- 1.2.1 Mammography (MG) -- 1.2.2 Ultrasonography (US) -- 1.2.3 Magnetic Resonance Imaging (MRI) -- 1.3 Microwave Breast Imaging Methods -- 1.3.1 Microwave Tomography -- 1.3.2 Radio-Based Microwave Imaging -- 1.4 Biomarkers and Biosensors for Breast Cancer Detection -- 1.4.1 Biomarkers -- 1.4.2 Biosensors -- 1.5 Conclusion -- Acknowledgment -- Conflict of Interest -- Authors Contribution -- References -- 2 DNA Replication Stress and Genome Instability in Breast Cancer -- 2.1 Introduction -- 2.2 Causes of Replication Stress and Genomic Instability -- 2.2.1 Replication Dysfunction -- 2.2.2 Transcription-Induced Stress -- 2.2.3 Genomic Aberrations and Instability -- 2.3 Molecular Mechanism of Genomic Instability -- 2.3.1 Problems Faced During DNA Damage Repair -- 2.3.2 Transcriptional Stress -- 2.3.3 CIN: Result of Defective Mitosis -- 2.4 Aftermath of Replication Stress on Cell and Its Fate -- 2.4.1 Conservation of Stalled Replication Forks -- 2.4.2 Chromosome Segregation Defect Check by HR Repair -- 2.4.3 Aging, Cell Death, and Senescence -- 2.5 Therapeutic Approach -- 2.6 Conclusion -- Abbreviations -- References -- 3 Recent Advancement of Nanotherapeutics to Treat Breast Cancer -- 3.1 Introduction -- 3.2 Pathophysiology of Breast Cancer -- 3.3 Classification of Breast Cancer -- 3.4 Techniques for Breast Cancer Detection -- 3.5 Current Breast Cancer Therapies -- 3.6 Nanotherapeutics for Breast Cancer Treatment and Metastasis -- 3.6.1 Nanodiamonds (NDs) -- 3.6.2 Intrinsic Toxicity Reduction -- 3.6.3 Diminishing Chemoresistance (CR) -- 3.6.4 Delivery of Combination Therapeutics Through NDs -- 3.7 Polymer-Based Nanoparticles (PBNPs).
3.8 Inorganic Nanoparticles (IONPs) -- 3.9 Hydrogels (HGLs) and Microbubbles (MBs) -- 3.10 Recent Patents of Nanotherapeutics for Breast Cancer Treatment -- 3.11 Clinical Trials of Nanotherapeutics for Breast Cancer -- 3.12 Conclusion and Future Perspectives -- References -- 4 HER Receptor in Breast Cancer -- 4.1 Introduction -- 4.2 Role of HER Receptors in the Human Body -- 4.3 HER2 Receptor in Breast Cancer Progression -- 4.4 Conclusion -- Conflict of Interest -- References -- 5 Human Endogenous Retroviruses in Triple-Negative Breast Cancer -- 5.1 Introduction -- 5.2 HERVs in Breast Cancer and TNBC -- 5.3 TROJAN lncRNA and TNBC -- 5.4 HERVs and Breast Cancer Treatments -- 5.5 Conclusion -- 5.6 Search Strategy -- References -- Part II Novel Drug Discovery and Development -- 6 Development in Drug Repurposing for the Treatment of Acute Leukemia Complicating Metastatic Breast Cancer -- 6.1 Introduction -- 6.1.1 Acute Leukemia's -- 6.1.2 Mitochondrial cAMP-PKA Signaling -- 6.1.3 Nuclear Compartment -- 6.1.4 Cytosolic Compartment and Plasma Membrane -- 6.2 Conclusion -- Conflict of Interest -- References -- 7 Novel Pharmaceutical Nanomaterials to Advance the Current Breast Cancer Treatment - Current Trends and Future Perspective -- 7.1 Introduction -- 7.2 Graphene-Based Nanomaterials for Breast Cancer -- 7.3 Light-Based Nanotechnology for Breast Cancer -- 7.3.1 Photodynamic Therapeutic Nanomaterials -- 7.3.2 Photothermal Therapeutic Nanomaterials -- 7.4 Green Synthesis of Gold Nanoparticles for Breast Cancer -- 7.5 Nanocarriers for Gene Therapy and Immunotherapy -- 7.6 Conclusion and Recommendations -- References -- Part III Advanced Technologies in Breast Cancer Therapy -- 8 Artificial Intelligence-Driven Decisions in Breast Cancer Diagnosis -- 8.1 Introduction -- 8.2 Breast Cancer -- 8.3 Diagnosis of Breast Cancer -- 8.4 Artificial Intelligence.
8.4.1 Artificial Intelligence and Medical Imaging -- 8.5 Conclusion -- 8.6 Future Challenges -- References -- 9 Establishing Nanotechnology-Based Drug Development for Triple-Negative Breast Cancer Treatment -- 9.1 Introduction -- 9.2 Triple-Negative Breast Cancer -- 9.2.1 Molecular Mechanisms (Signaling Pathways) Involved in TNBC Therapeutics -- 9.2.2 Conventional Therapeutics -- 9.2.3 Promising Nanotechnology Innovations for TNBC Therapy -- 9.2.4 Vaccines Under the Clinical Trial (CT) for TNBC Treatment -- 9.2.5 USFDA-Approved Clinical Trials -- 9.2.6 Current Status of TNBC Treatment -- 9.2.7 Recent Patents Based on Nanoformulations for TNBC Treatment -- 9.3 Challenges -- 9.4 Future Perspectives on TNBC Metastasis Therapy -- 9.4.1 NEO Adjuvant Modeling -- 9.4.2 Execution of In Vivo Genetic Screening -- 9.4.3 Identification of Effective Drugs for TNBC -- 9.4.4 Synergistic Effect of Drugs that Almost Eliminate Tumor -- 9.5 Conclusion -- References -- 10 Etiology and Therapy of Hormone Receptor-Positive Breast Cancer -- 10.1 Introduction -- 10.2 Etiology -- 10.2.1 Role of Estrogen Hormone -- 10.2.2 Role of Progesterone Hormone -- 10.2.3 Estrogen Receptor (ER) -- 10.2.4 Progesterone Receptor (PR) -- 10.3 Human Epidermal Growth Factor-2 (HER-2) -- 10.4 Various Types of Breast Cancer Detected Under Hormone Receptor Breast Cancer -- 10.4.1 Estrogen Receptor (ER) Positive -- 10.4.2 Progesterone Receptor (PR) Positive -- 10.4.3 Hormone Receptor (HR) Negative -- 10.5 Detection -- 10.6 Therapy -- 10.6.1 Selective Estrogen-Receptor Response Modulators (SERMs) -- 10.6.2 Aromatase Inhibitors -- 10.6.3 Estrogen-Receptor Down Regulators (ERDs) -- 10.6.4 Luteinizing Hormone-Releasing Hormone Agents (LHRH) -- 10.7 Limitations of Hormone Therapy -- 10.7.1 Tamoxifen -- 10.7.2 Raloxifene -- 10.7.3 Aromatase Inhibitors -- 10.7.4 Fulvestrant.
10.8 Triple-Negative Breast Cancer -- 10.8.1 Clinical History of Triple-Negative Breast Cancer -- 10.8.2 Imaging Characteristics/Features of Triple-Negative Breast Cancer -- 10.8.3 Subtypes of TNBC -- 10.8.4 Treatment of Triple-Negative Breast Cancer -- 10.8.5 Advance TNBC -- 10.8.6 Pharmacogenomics -- 10.9 Conclusion -- References -- 11 Donor-Acceptor-Based Heterocyclic Compounds as Chemotherapy and Photothermal Agents in Treatment of Breast Cancer Cell -- 11.1 Introduction -- 11.2 Causes for Breast Cancer -- 11.3 Imaging and Screening of Breast Cancer -- 11.4 Photothermal Therapy (PTT) -- 11.5 Acceptor-Donor-Based Heterocyclic Compounds -- 11.6 Examples of Organic-Based Donor-Acceptor -- 11.6.1 Indocyanine -- 11.7 Polymers-Based Agents -- 11.7.1 Phthalocyanine -- 11.8 Conclusion -- References -- Part IV Regulatory, Clinical Aspects and Case Studies -- 12 An Insight into Drug Regulatory Affairs and the Procedures -- 12.1 Endpoints of Clinical Trials for the Approval of Cancer Drugs and Biologics -- 12.2 Statutory and Regulatory Requirements for Effectiveness -- 12.2.1 Endpoints Supporting Previous Oncology Approvals -- 12.2.2 Endpoints Based on Tumor Assessments -- 12.2.3 Clinical Practice Guideline for the Diagnosis, Staging, and Treatment of Patients with Metastatic Breast Cancer -- 12.2.4 Cancer Drug and Diagnostic Regulation by the FDA -- 12.2.5 Considerations for Clinical Trial Design and Analysis -- 12.2.6 Single-Arm Studies -- 12.2.7 Randomized Studies Designed to Demonstrate Noninferiority -- 12.3 Clinical Trial Design Considerations -- 12.4 Clinical Trial Analysis Issues -- 12.5 Use of Pathological Complete Response as an Endpoint to Support Accelerated Approval in Neoadjuvant Treatment of High-Risk Early-Stage Breast Cancer -- 12.6 Developing Treatments for Premenopausal Women with Breast Cancer -- 12.7 Recommendations by FDA.
12.7.1 Access to Experimental Cancer Drugs -- 12.7.2 How to Get a Hold of an Experimental Drug -- 12.7.3 Access to More Information (Compassionate Use) -- 12.8 What is Right to Try? -- 12.9 Examples of Drugs Approved for Breast Cancer -- References -- 13 A Comprehensive Review of Some Heat-Shock Proteins in the Development and Progression of Human Breast Cancer -- 13.1 Introduction -- 13.1.1 Cancer and Its Economic Burden on Human -- 13.2 Structure-Functional Features of HSPs -- 13.2.1 Heat-Shock Protein 40 -- 13.2.2 Heat-Shock Protein 60 -- 13.2.3 Heat-Shock Protein 70 -- 13.2.4 Heat-Shock Protein 90 -- 13.3 Conclusion and Future Perspectives -- Acknowledgments -- References -- 14 Nanoparticle-Based Therapeutics for Triple Negative Breast Cancer -- 14.1 Breast Cancer: State of Research and Practice -- 14.2 Triple Negative Breast Cancer (TNBC) and Treatment Approaches -- 14.3 Nanoparticle Therapeutics for TNBC -- 14.3.1 Metallic Nanoparticles -- 14.3.2 Dendrimers -- 14.3.3 Lipid-Based Nanoparticles (LNPs) -- 14.3.4 CRISPR Nanoparticles -- 14.3.5 Exosomes (Exo) -- 14.3.6 Nucleic Acid (NA)-Based Therapeutics -- 14.4 Ligands Used to Enhance Nanoparticle Therapeutics in TNBC -- 14.4.1 Antibodies -- 14.4.2 Peptides -- 14.4.3 Aptamers -- 14.4.4 Small Molecules -- 14.5 Conclusion -- References -- 15 Current Updates in Breast Cancer Drugs -- 15.1 Introduction -- 15.2 Therapeutic Approaches -- 15.2.1 Hormonotherapy -- 15.2.2 Chemotherapy -- 15.3 Targeted Therapy -- 15.3.1 Drug Repurposing -- 15.3.2 HER2 Inhibitors -- 15.3.3 PARP Inhibitors -- 15.3.4 Immunotherapy -- 15.3.5 Others Novel Targets -- 15.4 Conclusion -- Acknowledgment -- Conflict of Interest -- Authors Contribution -- References -- Index -- EULA.
Record Nr. UNINA-9910831190103321
Weinheim, Germany : , : WILEY-VCH GmbH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Drug development for malaria : novel approaches for prevention and treatment / / edited by Pravin Kendrekar
Drug development for malaria : novel approaches for prevention and treatment / / edited by Pravin Kendrekar
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2023]
Descrizione fisica 1 online resource (395 pages)
Disciplina 616.9362
Soggetto topico Malaria - Treatment
Drug development
ISBN 3-527-83058-8
3-527-83060-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Part I Introduction -- Chapter 1 Chronology of Drug Development for Malaria -- 1.1 Introduction -- 1.1.1 Life Cycle of Malaria (Adapted from CDC) -- 1.2 Malaria - Erstwhile Memories -- 1.2.1 Progress Fighting Malaria -- 1.3 Current Chemotherapy Used to Treat Malaria -- 1.3.1 Current Combination Therapy -- 1.4 Drug Resistance of Antimalarial Drugs -- 1.4.1 Detection of Drug Resistance -- 1.5 Newer Drugs Approved for Malaria Treatment -- 1.6 Current Approaches to Developing a Malaria Vaccine -- 1.6.1 Hope for Vaccine Lies in the Parasite Itself -- 1.7 Conclusion: The Path Forward -- 1.7.1 RTS, ‐S Vaccine: A New Tool with Potential for Africa -- References -- Part II Challenges and Opportunities in Malaria Therapy -- Chapter 2 Scientific Challenges and Treatment Opportunities in the Face of Shifting Malaria Epidemiology -- 2.1 Introduction -- 2.2 The Scientific Challenges Against Malarial Drug -- 2.3 Advances in Understanding and Managing Drug Resistance -- 2.3.1 Vector and Its Control -- 2.3.2 Parasite and Its Control -- 2.3.2.1 Malaria Vaccine -- 2.3.2.2 Antimalarial Drugs -- 2.4 Methods to Assess the Presence and Level of Drug Resistance -- 2.4.1 Therapeutic Efficacy of Antimalarial Drugs -- 2.4.2 Molecular Markers Associated with P. falciparum -- 2.5 Antimalarial Drugs Currently in Use and in the Pipeline -- 2.6 Future -- References -- Chapter 3 Emerging Formulation Technologies Against Malaria Resurgence -- List of Abbreviations -- 3.1 Introduction -- 3.1.1 Major Pathological Hallmarks of Malaria -- 3.1.2 Current Treatment Strategies -- 3.2 Pitfalls of the Current Treatment Regimen -- 3.2.1 Drug Resistance -- 3.2.2 High Drug Dose -- 3.2.3 Long‐Term Treatment -- 3.2.4 Recurrence and Reversion of Diseases -- 3.3 Nanotechnology‐Based Strategies for Targeting in Antimalarial Therapy.
3.3.1 Passive Targeting -- 3.3.2 Active Targeting -- 3.3.2.1 Hepatocyte Targeting -- 3.3.2.2 Erythrocyte Targeting -- 3.3.2.3 Brain Targeting -- 3.3.3 Rapid Diagnosis and Vector Control -- 3.4 Nano Formulations for Malarial Treatment -- 3.4.1 Lipid‐Based Nanoplatforms -- 3.4.1.1 Nanoemulsion -- 3.4.1.2 Self‐Emulsifying Drug Delivery System (SEDDS) -- 3.4.1.3 Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) -- 3.4.1.4 Liposome -- 3.4.2 Polymer‐Based Nanoplatforms for Malaria -- 3.4.2.1 Nanoparticles -- 3.4.2.2 Nanocapsules -- 3.4.2.3 Dendrimers -- 3.4.2.4 Micelles -- 3.4.2.5 Polymeric Hydrogel Nanoparticles -- 3.4.2.6 Nanosuspension -- 3.4.3 Organized Layer‐by‐Layer Assembly -- 3.4.4 Inorganic Nano‐architectonics -- 3.4.4.1 Metallic Platforms -- 3.4.4.2 Quantum Dots -- 3.4.4.3 Carbon Nanostructures -- 3.4.4.4 Bio‐ceramics -- 3.4.5 Bio‐inspired Nanocarriers -- 3.4.5.1 Vaccines Based on Bio‐inspired Nanocarriers -- 3.4.5.2 Bio‐engineered Strategy Based on Erythrocytes -- 3.4.6 Protein-Peptide‐Based Drug Delivery System -- 3.4.7 Stimuli‐Responsive Platforms for Malaria -- 3.4.7.1 pH‐Responsive Formulations -- 3.4.7.2 Thermo‐Responsive Formulations -- 3.4.7.3 Redox State Responsive Substances -- 3.4.7.4 Stimuli‐Responsive Liquid Crystalline Materials -- 3.5 Diagnostics -- 3.5.1 Stimuli‐Responsive Iron Oxide and Gold Nanoparticle Reagent System -- 3.5.2 Immunological Adjuvants -- 3.5.3 Nanofibers -- 3.6 Challenges in Clinical Translation of Nanomedicine -- 3.6.1 Biological Challenges -- 3.6.2 Biocompatibility and Safety -- 3.6.3 Challenges in Manufacturing Scale‐Up and Reproducibility -- 3.6.4 Analytical Characterization and Quality Control Challenges of Nano‐Formulations -- 3.6.5 Regulatory Challenges -- 3.6.6 Other Challenges -- 3.7 Summary and Future Perspective -- 3.8 Conclusion -- Acknowledgments -- References.
Chapter 4 Targeted Drug Delivery for Antimalarial Therapy -- 4.1 Introduction -- 4.2 Remodelling of Parasite‐Infected Red Blood Cell (pRBC) -- 4.2.1 The Red Blood Cell Membrane (RBCM) -- 4.2.2 The Parasitophorous Vacuole Membrane (PVM) -- 4.2.3 The Parasite Plasma Membrane (PPM) -- 4.3 The Emergence of Resistance and Antimalarial Therapy Approach -- 4.4 Nanocarriers for Antimalarial Drug Delivery -- 4.4.1 Liposomes -- 4.4.2 Solid Lipid Nanoparticles (SLNs) -- 4.4.3 Nanostructured Lipid Carriers (NLCs) -- 4.4.4 Nano‐emulsions (NEs) -- 4.4.5 Polymeric Nanoparticles -- 4.5 Targeted Antimalarial Drug Delivery Systems -- 4.5.1 Passive Drug Targeting with Conventional Nanocarriers -- 4.5.2 Active Drug Targeting with Surface‐Modified Nanocarrier -- 4.6 Conclusion: Moving Towards the Future -- Acknowledgements -- References -- Chapter 5 The Imminent Threat of Antimalarial Drug Resistance -- 5.1 Introduction -- 5.2 Antimalarial Drugs: An Overview -- 5.3 The Evolution of CQ Resistance -- 5.3.1 Mechanism of Action of CQ -- 5.3.2 Basis of CQ Resistance -- 5.3.3 Prevalence of CQ Resistance -- 5.3.4 WHO Guidelines to Use CQ -- 5.4 Impact of Sulfadoxine-Pyrimethamine Resistance -- 5.4.1 Mechanism of Action of SP -- 5.4.2 SP Resistance -- 5.4.3 Distribution of DHPS and DHFR Mutation Across Globe -- 5.4.3.1 dhfr -- 5.4.3.2 dhps -- 5.4.4 WHO Guidelines to Use SP -- 5.4.4.1 IPTp Guidelines -- 5.4.4.2 IPTi Guidelines -- 5.5 ACT Resistance -- 5.5.1 Mechanism of Action of ART -- 5.5.2 ART Resistance and ACT Failure -- 5.5.3 WHO Guidelines -- 5.6 Conclusion: The Road Ahead -- References -- Chapter 6 Current Therapies and New Drug Targets for the Future Drug Development of Drug Resistant Malaria -- 6.1 Introduction -- 6.2 Life Cycle of Plasmodium falciparum -- 6.3 Current Antimalarial Therapy and Their Shortcomings -- 6.4 Drug Targets for Current Antimalarial Therapy.
6.4.1 Drug‐Resistant Malaria and Identification of New Targets -- 6.4.1.1 Food Vacuole as Drug Targets -- 6.4.1.2 Shikimic Acid Pathway Targeting -- 6.4.1.3 Targeting Folate Pathway and Methionine Synthesis Pathway -- 6.4.1.4 Glycolytic Pathway Inhibition -- 6.4.2 Mitochondria as Drug Targets -- 6.4.2.1 Targeting Electron Transport Chain -- 6.4.2.2 Inhibition of Dihydroorate Dehydrogenase -- 6.5 Future Drug Development for the Treatment of Malaria -- 6.5.1 Benefits of Nanocarriers -- 6.5.2 Lipid‐Based Drug Delivery -- 6.5.3 Liposomes (as Nanocarriers) -- 6.5.4 Nanostructured Lipid Carriers -- 6.5.5 Solid Lipid Nanocarriers -- 6.6 Conclusion -- References -- Part III Drug Development -- Chapter 7 Assays for Antimalarial Drug Discovery -- 7.1 Introduction -- 7.2 In Vitro Assays for Antimalarial Drug Discovery -- 7.2.1 Schizont Maturation Inhibition Assay (Microscopic Test) -- 7.2.2 In Vitro Micro Test Technique -- 7.2.3 Radioisotope Assay -- 7.2.4 Colorimetric Assay (Plasmodium Lactate Dehydrogenase Assay [pLDH]) -- 7.2.5 ELISA‐Based Methods -- 7.2.5.1 DELI Assay -- 7.2.5.2 Assay Based on Histidine‐Rich Protein II (HRP II) of P. falciparum -- 7.2.6 Flow Cytometry -- 7.2.7 Fluorometric Assay -- 7.2.8 β‐Hematin Formation (Haemozoin Test) -- 7.2.9 Drug Interaction Assay and Isobologram Analysis -- 7.2.10 PCR‐Based Methods -- 7.2.11 In Vitro Assays Targeting Exo‐erythrocytic and Sexual Stages of the Parasite -- 7.2.11.1 Exo‐erythrocytic Schizontocidal Assay -- 7.2.11.2 Ex‐flagellation Assay -- 7.3 In Vivo Assays for Antimalarial Drug Discovery -- 7.3.1 Peters' 4‐Day Test -- 7.3.2 Dose Ranging Full 4‐Day Test -- 7.3.3 Onset/Recrudescence Test -- 7.3.4 Preventive Test -- 7.3.5 Curative Test -- 7.3.6 Hill's Test for Causal Prophylaxis and Residual Activity -- 7.3.7 Assays with P. berghei Green Fluorescent Protein (PbGFP).
7.3.8 Assays Employing Immunocompromised Mice -- 7.3.9 Primate Models for In Vivo Studies -- 7.3.10 Sporontocidal Assays -- 7.3.11 Anti‐sporozoite Assay -- 7.4 Ex Vivo Assays for Antimalarial Drug Discovery -- 7.5 Assays for Assessment of In Vitro Toxicity -- 7.5.1 MTT Assay -- 7.5.2 XTT Assay -- 7.5.3 LDH (Lactate Dehydrogenase) Assay -- 7.5.4 Protein Content Assay -- 7.5.5 Neutral Red Uptake Assay (NRU) -- 7.6 Assays for Assessment of In Vivo Toxicity -- 7.6.1 Acute Toxicity -- 7.6.1.1 Limit Test of Lorke -- 7.6.1.2 Up and Down Procedure -- 7.6.2 Chronic Toxicity -- 7.7 Conclusion -- References -- Chapter 8 Aminoacyl‐tRNA Synthetases as Malarial Drug Targets: A Structural Biology Perspective -- 8.1 Introduction -- 8.2 Pf/Pv‐aaRSs -- 8.2.1 Pf/Pv Genome -- 8.2.2 Aminoacyl‐tRNA Synthetases (aaRSs) -- 8.3 Aminoacyl‐tRNA Synthetases as Druggable Targets -- 8.4 Biochemical Screening of Drug Libraries -- 8.4.1 Colorimetric Assays -- 8.4.2 Enzyme‐Coupled Assays -- 8.4.3 Luciferase Assay -- 8.4.4 Assay to Test Synthetic as Well as Proofreading Activity -- 8.5 Structurally Validated Pf/Pv‐aaRSs as Drug Targets -- 8.5.1 Lysyl‐tRNA Synthetase (KRS) -- 8.5.2 Prolyl‐tRNA Synthetase -- 8.6 Potential Drug Targets Pf/Pv‐aaRSs -- 8.6.1 Leucyl‐tRNA Synthetase (LRS) -- 8.7 Arginyl‐tRNA Synthetase (RRS) -- 8.7.1 Tryptophanyl‐tRNA Synthetase (WRS) -- 8.7.2 Tyrosyl‐tRNA Synthetase -- 8.8 Others -- 8.9 Conclusion: The Road Ahead -- References -- Chapter 9 Natural Products as a Source for Antimalarial Drug Development Process - An Overview -- 9.1 Introduction -- 9.2 Phytochemicals as Antimalarial Agents: Recent Developments -- 9.2.1 Alkaloids -- 9.2.2 Terpenes -- 9.2.2.1 Sesquiterpene Lactones -- 9.2.2.2 Diterpenes -- 9.2.2.3 Triterpenes -- 9.2.2.4 Steroids and Others -- 9.2.3 Polyphenols -- 9.2.3.1 Biflavonoids -- 9.2.3.2 Prenylated Flavonoids -- 9.2.3.3 Other Flavonoids.
9.3 Traditional System of Medicine and Malaria.
Record Nr. UNINA-9910830804403321
Weinheim, Germany : , : Wiley-VCH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui