Artificial intelligence for industries of the future : beyond Facebook, Amazon, Microsoft and Google / / Mayank Kejriwal |
Autore | Kejriwal Mayank |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2023] |
Descrizione fisica | 1 online resource (165 pages) |
Disciplina | 060 |
Collana | Future of Business and Finance |
Soggetto topico | Artificial intelligence |
ISBN |
9783031190391
9783031190384 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Acknowledgments -- Contents -- Acronyms -- 1 Artificial Intelligence: An Introduction -- 1.1 Introduction -- 1.2 Artificial Intelligence (AI) -- 1.3 AI, Machine Learning, and Deep Learning -- 1.3.1 Types of Machine Learning -- 1.4 Industry 4.0 Versus Industries of the Future -- 1.5 Other (Non-AI) Drivers of Industries of the Future -- 1.5.1 Quantum Information Science (QIS) -- 1.5.2 5G and Advanced Communication -- 1.5.3 Advanced Manufacturing -- 1.5.4 Biotechnology -- 1.6 Where Will Industries of the Future Come From? -- 1.7 The Role of Research -- 1.8 Future Developments -- References -- 2 AI in Practice and Implementation: Issues and Costs -- 2.1 Introduction -- 2.2 Challenges in Implementing AI -- 2.2.1 Data Acquisition -- 2.2.2 Data Quality -- 2.2.3 Privacy and Compliance -- 2.2.4 AI Quality Metrics -- 2.3 Guidelines and Practices for Measuring Return on Investment (ROI) of AI Projects -- 2.3.1 Traditional Valuation Approaches and Their Pitfalls for Valuing AI Projects -- 2.3.2 Soft Versus Hard Returns and Investments -- 2.4 Digital Technology and the Productivity Puzzle -- 2.5 Conclusion -- References -- 3 AI in Industry Today -- 3.1 Introduction -- 3.2 AI in Big Tech -- 3.2.1 Alphabet -- 3.2.2 Amazon -- 3.2.3 Meta -- 3.2.4 Other Big Tech: Microsoft and Apple -- 3.2.5 Other Large Tech Firms in the United States -- 3.2.6 The Chinese ``Big Tech'' -- 3.3 Large Firms Outside Big Tech -- 3.4 Startups and Small/Medium-Sized Enterprises (SBEs) -- 3.5 Case Study: Neural Language Models -- 3.5.1 Can Transformers Automate Software Engineers? -- 3.5.2 Applications Beyond NLP -- 3.5.3 Potential Ethical Concerns -- 3.5.4 Summary -- 3.6 Conclusion -- References -- 4 Augmented Artificial Intelligence -- 4.1 Introduction -- 4.2 Augmented AI Versus Complete Automation -- 4.3 Key Features and Example Applications.
4.4 A Case Study in Augmented AI: Radiology -- 4.5 Changes in the Workforce -- 4.5.1 How Will Organizations Change? -- 4.5.2 Demand for Technological Skills -- 4.5.3 Cognitive Skills and the Future of Work: Is There a Mismatch? -- 4.5.4 New-Collar Versus White-Collar Jobs -- 4.5.5 Adaptation in the C-Suite -- 4.6 Automation and the Future of Work: Examples from Three Industrial Sectors -- 4.6.1 Banking and Insurance -- 4.6.2 Manufacturing -- 4.6.3 Retail -- 4.7 Conclusion -- References -- 5 AI Ethics and Policy -- 5.1 Introduction -- 5.2 AI Versus Digital Ethics -- 5.3 The Philosophy of Ethics: A Brief Review -- 5.4 AI Ethics in Policy -- 5.4.1 Case Study 1: The European Union General Data Protection Regulation (GDPR) -- 5.4.1.1 Enforcement of GDPR -- 5.4.2 Case Study 2: The United States National Defense Authorization Act (NDAA) -- 5.5 AI Ethics in Research and Higher Education -- 5.6 Conclusion -- References -- 6 What Is on the Horizon? -- 6.1 Introduction -- 6.2 Can AI Copyright Its Own Art? -- 6.3 Legal Issues Around Deepfakes -- 6.4 AI's Explainability Crisis -- 6.5 More Vigorous Algorithmic Regulation -- 6.6 Increasing Convergence of Emerging Technologies -- 6.7 Concluding Notes -- References -- Glossary -- References -- Index. |
Record Nr. | UNISA-996546822803316 |
Kejriwal Mayank | ||
Cham, Switzerland : , : Springer, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Artificial intelligence for industries of the future : beyond Facebook, Amazon, Microsoft and Google / / Mayank Kejriwal |
Autore | Kejriwal Mayank |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2023] |
Descrizione fisica | 1 online resource (165 pages) |
Disciplina | 060 |
Collana | Future of Business and Finance |
Soggetto topico | Artificial intelligence |
ISBN |
9783031190391
9783031190384 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Acknowledgments -- Contents -- Acronyms -- 1 Artificial Intelligence: An Introduction -- 1.1 Introduction -- 1.2 Artificial Intelligence (AI) -- 1.3 AI, Machine Learning, and Deep Learning -- 1.3.1 Types of Machine Learning -- 1.4 Industry 4.0 Versus Industries of the Future -- 1.5 Other (Non-AI) Drivers of Industries of the Future -- 1.5.1 Quantum Information Science (QIS) -- 1.5.2 5G and Advanced Communication -- 1.5.3 Advanced Manufacturing -- 1.5.4 Biotechnology -- 1.6 Where Will Industries of the Future Come From? -- 1.7 The Role of Research -- 1.8 Future Developments -- References -- 2 AI in Practice and Implementation: Issues and Costs -- 2.1 Introduction -- 2.2 Challenges in Implementing AI -- 2.2.1 Data Acquisition -- 2.2.2 Data Quality -- 2.2.3 Privacy and Compliance -- 2.2.4 AI Quality Metrics -- 2.3 Guidelines and Practices for Measuring Return on Investment (ROI) of AI Projects -- 2.3.1 Traditional Valuation Approaches and Their Pitfalls for Valuing AI Projects -- 2.3.2 Soft Versus Hard Returns and Investments -- 2.4 Digital Technology and the Productivity Puzzle -- 2.5 Conclusion -- References -- 3 AI in Industry Today -- 3.1 Introduction -- 3.2 AI in Big Tech -- 3.2.1 Alphabet -- 3.2.2 Amazon -- 3.2.3 Meta -- 3.2.4 Other Big Tech: Microsoft and Apple -- 3.2.5 Other Large Tech Firms in the United States -- 3.2.6 The Chinese ``Big Tech'' -- 3.3 Large Firms Outside Big Tech -- 3.4 Startups and Small/Medium-Sized Enterprises (SBEs) -- 3.5 Case Study: Neural Language Models -- 3.5.1 Can Transformers Automate Software Engineers? -- 3.5.2 Applications Beyond NLP -- 3.5.3 Potential Ethical Concerns -- 3.5.4 Summary -- 3.6 Conclusion -- References -- 4 Augmented Artificial Intelligence -- 4.1 Introduction -- 4.2 Augmented AI Versus Complete Automation -- 4.3 Key Features and Example Applications.
4.4 A Case Study in Augmented AI: Radiology -- 4.5 Changes in the Workforce -- 4.5.1 How Will Organizations Change? -- 4.5.2 Demand for Technological Skills -- 4.5.3 Cognitive Skills and the Future of Work: Is There a Mismatch? -- 4.5.4 New-Collar Versus White-Collar Jobs -- 4.5.5 Adaptation in the C-Suite -- 4.6 Automation and the Future of Work: Examples from Three Industrial Sectors -- 4.6.1 Banking and Insurance -- 4.6.2 Manufacturing -- 4.6.3 Retail -- 4.7 Conclusion -- References -- 5 AI Ethics and Policy -- 5.1 Introduction -- 5.2 AI Versus Digital Ethics -- 5.3 The Philosophy of Ethics: A Brief Review -- 5.4 AI Ethics in Policy -- 5.4.1 Case Study 1: The European Union General Data Protection Regulation (GDPR) -- 5.4.1.1 Enforcement of GDPR -- 5.4.2 Case Study 2: The United States National Defense Authorization Act (NDAA) -- 5.5 AI Ethics in Research and Higher Education -- 5.6 Conclusion -- References -- 6 What Is on the Horizon? -- 6.1 Introduction -- 6.2 Can AI Copyright Its Own Art? -- 6.3 Legal Issues Around Deepfakes -- 6.4 AI's Explainability Crisis -- 6.5 More Vigorous Algorithmic Regulation -- 6.6 Increasing Convergence of Emerging Technologies -- 6.7 Concluding Notes -- References -- Glossary -- References -- Index. |
Record Nr. | UNINA-9910632477703321 |
Kejriwal Mayank | ||
Cham, Switzerland : , : Springer, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Domain-Specific Knowledge Graph Construction / / by Mayank Kejriwal |
Autore | Kejriwal Mayank |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (115 pages) |
Disciplina |
511.5
006.33 |
Collana | SpringerBriefs in Computer Science |
Soggetto topico |
Data mining
Information storage and retrieval Application software Mathematical statistics Data Mining and Knowledge Discovery Information Storage and Retrieval Information Systems Applications (incl. Internet) Probability and Statistics in Computer Science |
ISBN | 3-030-12375-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. What is a knowledge graph? -- 2. Information Extraction -- 3. Entity Resolution -- 4. Advanced Topic: Knowledge Graph Completion -- 5. Ecosystems . |
Record Nr. | UNINA-9910337574903321 |
Kejriwal Mayank | ||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Populating a linked data entity name system : a big data solution to unsupervised instance matching / / Mayank Kejriwal |
Autore | Kejriwal Mayank |
Pubbl/distr/stampa | Amsterdam, [Netherlands] : , : IOS Press, , 2017 |
Descrizione fisica | 1 online resource (190 pages) : illustrations, tables |
Disciplina | 025.0427 |
Collana | Studies on the Semantic Web |
Soggetto topico |
Linked data
RDF (Document markup language) Big data |
ISBN | 1-61499-692-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910162815503321 |
Kejriwal Mayank | ||
Amsterdam, [Netherlands] : , : IOS Press, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Proceedings of the 10th International Conference on Knowledge Capture / / Mayank Kejriwal |
Autore | Kejriwal Mayank |
Pubbl/distr/stampa | New York, N.Y. : , : Association for Computing Machinery, , 2019 |
Descrizione fisica | 1 online resource (281 pages) |
Disciplina | 004 |
Collana | ACM Conferences |
Soggetto topico | Computer science |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910412126003321 |
Kejriwal Mayank | ||
New York, N.Y. : , : Association for Computing Machinery, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|