Intelligent bioinformatics [[electronic resource] ] : the application of artificial intelligence techniques to bioinformatics problems / / Edward Keedwell and Ajit Narayanan |
Autore | Keedwell Edward |
Pubbl/distr/stampa | Hoboken, NJ, : Wiley, c2005 |
Descrizione fisica | 1 online resource (294 p.) |
Disciplina |
570.28563
570/.285 |
Altri autori (Persone) | NarayananAjit <1952-> |
Soggetto topico |
Artificial intelligence - Biological applications
Bioinformatics |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-28753-5
9786610287536 0-470-01572-1 0-470-02176-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intelligent Bioinformatics; Contents; Preface; Acknowledgement; PART 1 INTRODUCTION; 1 Introduction to the Basics of Molecular Biology; 1.1 Basic cell architecture; 1.2 The structure, content and scale of deoxyribonucleic acid (DNA); 1.3 History of the human genome; 1.4 Genes and proteins; 1.5 Current knowledge and the 'central dogma'; 1.6 Why proteins are important; 1.7 Gene and cell regulation; 1.8 When cell regulation goes wrong; 1.9 So, what is bioinformatics?; 1.10 Summary of chapter; 1.11 Further reading; 2 Introduction to Problems and Challenges in Bioinformatics; 2.1 Introduction
2.2 Genome2.3 Transcriptome; 2.4 Proteome; 2.5 Interference technology, viruses and the immune system; 2.6 Summary of chapter; 2.7 Further reading; 3 Introduction to Artificial Intelligence and Computer Science; 3.1 Introduction to search; 3.2 Search algorithms; 3.3 Heuristic search methods; 3.4 Optimal search strategies; 3.5 Problems with search techniques; 3.6 Complexity of search; 3.7 Use of graphs in bioinformatics; 3.8 Grammars, languages and automata; 3.9 Classes of problems; 3.10 Summary of chapter; 3.11 Further reading; PART 2 CURRENT TECHNIQUES; 4 Probabilistic Approaches 4.1 Introduction to probability4.2 Bayes' Theorem; 4.3 Bayesian networks; 4.4 Markov networks; 4.5 Summary of chapter; 4.6 References; 5 Nearest Neighbour and Clustering Approaches; 5.1 Introduction; 5.2 Nearest neighbour method; 5.3 Nearest neighbour approach for secondary structure protein folding prediction; 5.4 Clustering; 5.5 Advanced clustering techniques; 5.6 Application guidelines; 5.7 Summary of chapter; 5.8 References; 6 Identification (Decision) Trees; 6.1 Method; 6.2 Gain criterion; 6.3 Over fitting and pruning; 6.4 Application guidelines; 6.5 Bioinformatics applications 6.6 Background6.7 Summary of chapter; 6.8 References; 7 Neural Networks; 7.1 Method; 7.2 Application guidelines; 7.3 Bioinformatics applications; 7.4 Background; 7.5 Summary of chapter; 7.6 References; 8 Genetic Algorithms; 8.1 Single-objective genetic algorithms - method; 8.2 Single-objective genetic algorithms - example; 8.3 Multi-objective genetic algorithms - method; 8.4 Application guidelines; 8.5 Genetic algorithms - bioinformatics applications; 8.6 Summary of chapter; 8.7 References and further reading; PART 3 FUTURE TECHNIQUES; 9 Genetic Programming; 9.1 Method 9.2 Application guidelines9.3 Bioinformatics applications; 9.4 Background; 9.5 Summary of chapter; 9.6 References; 10 Cellular Automata; 10.1 Method; 10.2 Application guidelines; 10.3 Bioinformatics applications; 10.4 Background; 10.5 Summary of chapter; 10.6 References and further reading; 11 Hybrid Methods; 11.1 Method; 11.2 Neural-genetic algorithm for analysing gene expression data; 11.3 Genetic algorithm and k nearest neighbour hybrid for biochemistry solvation; 11.4 Genetic programming neural networks for determining gene - gene interactions in epidemiology; 11.5 Application guidelines 11.6 Conclusions |
Record Nr. | UNINA-9910143742503321 |
Keedwell Edward | ||
Hoboken, NJ, : Wiley, c2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Intelligent bioinformatics [[electronic resource] ] : the application of artificial intelligence techniques to bioinformatics problems / / Edward Keedwell and Ajit Narayanan |
Autore | Keedwell Edward |
Pubbl/distr/stampa | Hoboken, NJ, : Wiley, c2005 |
Descrizione fisica | 1 online resource (294 p.) |
Disciplina |
570.28563
570/.285 |
Altri autori (Persone) | NarayananAjit <1952-> |
Soggetto topico |
Artificial intelligence - Biological applications
Bioinformatics |
ISBN |
1-280-28753-5
9786610287536 0-470-01572-1 0-470-02176-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intelligent Bioinformatics; Contents; Preface; Acknowledgement; PART 1 INTRODUCTION; 1 Introduction to the Basics of Molecular Biology; 1.1 Basic cell architecture; 1.2 The structure, content and scale of deoxyribonucleic acid (DNA); 1.3 History of the human genome; 1.4 Genes and proteins; 1.5 Current knowledge and the 'central dogma'; 1.6 Why proteins are important; 1.7 Gene and cell regulation; 1.8 When cell regulation goes wrong; 1.9 So, what is bioinformatics?; 1.10 Summary of chapter; 1.11 Further reading; 2 Introduction to Problems and Challenges in Bioinformatics; 2.1 Introduction
2.2 Genome2.3 Transcriptome; 2.4 Proteome; 2.5 Interference technology, viruses and the immune system; 2.6 Summary of chapter; 2.7 Further reading; 3 Introduction to Artificial Intelligence and Computer Science; 3.1 Introduction to search; 3.2 Search algorithms; 3.3 Heuristic search methods; 3.4 Optimal search strategies; 3.5 Problems with search techniques; 3.6 Complexity of search; 3.7 Use of graphs in bioinformatics; 3.8 Grammars, languages and automata; 3.9 Classes of problems; 3.10 Summary of chapter; 3.11 Further reading; PART 2 CURRENT TECHNIQUES; 4 Probabilistic Approaches 4.1 Introduction to probability4.2 Bayes' Theorem; 4.3 Bayesian networks; 4.4 Markov networks; 4.5 Summary of chapter; 4.6 References; 5 Nearest Neighbour and Clustering Approaches; 5.1 Introduction; 5.2 Nearest neighbour method; 5.3 Nearest neighbour approach for secondary structure protein folding prediction; 5.4 Clustering; 5.5 Advanced clustering techniques; 5.6 Application guidelines; 5.7 Summary of chapter; 5.8 References; 6 Identification (Decision) Trees; 6.1 Method; 6.2 Gain criterion; 6.3 Over fitting and pruning; 6.4 Application guidelines; 6.5 Bioinformatics applications 6.6 Background6.7 Summary of chapter; 6.8 References; 7 Neural Networks; 7.1 Method; 7.2 Application guidelines; 7.3 Bioinformatics applications; 7.4 Background; 7.5 Summary of chapter; 7.6 References; 8 Genetic Algorithms; 8.1 Single-objective genetic algorithms - method; 8.2 Single-objective genetic algorithms - example; 8.3 Multi-objective genetic algorithms - method; 8.4 Application guidelines; 8.5 Genetic algorithms - bioinformatics applications; 8.6 Summary of chapter; 8.7 References and further reading; PART 3 FUTURE TECHNIQUES; 9 Genetic Programming; 9.1 Method 9.2 Application guidelines9.3 Bioinformatics applications; 9.4 Background; 9.5 Summary of chapter; 9.6 References; 10 Cellular Automata; 10.1 Method; 10.2 Application guidelines; 10.3 Bioinformatics applications; 10.4 Background; 10.5 Summary of chapter; 10.6 References and further reading; 11 Hybrid Methods; 11.1 Method; 11.2 Neural-genetic algorithm for analysing gene expression data; 11.3 Genetic algorithm and k nearest neighbour hybrid for biochemistry solvation; 11.4 Genetic programming neural networks for determining gene - gene interactions in epidemiology; 11.5 Application guidelines 11.6 Conclusions |
Record Nr. | UNINA-9910830706603321 |
Keedwell Edward | ||
Hoboken, NJ, : Wiley, c2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Intelligent bioinformatics : the application of artificial intelligence techniques to bioinformatics problems / / Edward Keedwell and Ajit Narayanan |
Autore | Keedwell Edward |
Pubbl/distr/stampa | Hoboken, NJ, : Wiley, c2005 |
Descrizione fisica | 1 online resource (294 p.) |
Disciplina | 570/.285 |
Altri autori (Persone) | NarayananAjit <1952-> |
Soggetto topico |
Artificial intelligence - Biological applications
Bioinformatics |
ISBN |
1-280-28753-5
9786610287536 0-470-01572-1 0-470-02176-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intelligent Bioinformatics; Contents; Preface; Acknowledgement; PART 1 INTRODUCTION; 1 Introduction to the Basics of Molecular Biology; 1.1 Basic cell architecture; 1.2 The structure, content and scale of deoxyribonucleic acid (DNA); 1.3 History of the human genome; 1.4 Genes and proteins; 1.5 Current knowledge and the 'central dogma'; 1.6 Why proteins are important; 1.7 Gene and cell regulation; 1.8 When cell regulation goes wrong; 1.9 So, what is bioinformatics?; 1.10 Summary of chapter; 1.11 Further reading; 2 Introduction to Problems and Challenges in Bioinformatics; 2.1 Introduction
2.2 Genome2.3 Transcriptome; 2.4 Proteome; 2.5 Interference technology, viruses and the immune system; 2.6 Summary of chapter; 2.7 Further reading; 3 Introduction to Artificial Intelligence and Computer Science; 3.1 Introduction to search; 3.2 Search algorithms; 3.3 Heuristic search methods; 3.4 Optimal search strategies; 3.5 Problems with search techniques; 3.6 Complexity of search; 3.7 Use of graphs in bioinformatics; 3.8 Grammars, languages and automata; 3.9 Classes of problems; 3.10 Summary of chapter; 3.11 Further reading; PART 2 CURRENT TECHNIQUES; 4 Probabilistic Approaches 4.1 Introduction to probability4.2 Bayes' Theorem; 4.3 Bayesian networks; 4.4 Markov networks; 4.5 Summary of chapter; 4.6 References; 5 Nearest Neighbour and Clustering Approaches; 5.1 Introduction; 5.2 Nearest neighbour method; 5.3 Nearest neighbour approach for secondary structure protein folding prediction; 5.4 Clustering; 5.5 Advanced clustering techniques; 5.6 Application guidelines; 5.7 Summary of chapter; 5.8 References; 6 Identification (Decision) Trees; 6.1 Method; 6.2 Gain criterion; 6.3 Over fitting and pruning; 6.4 Application guidelines; 6.5 Bioinformatics applications 6.6 Background6.7 Summary of chapter; 6.8 References; 7 Neural Networks; 7.1 Method; 7.2 Application guidelines; 7.3 Bioinformatics applications; 7.4 Background; 7.5 Summary of chapter; 7.6 References; 8 Genetic Algorithms; 8.1 Single-objective genetic algorithms - method; 8.2 Single-objective genetic algorithms - example; 8.3 Multi-objective genetic algorithms - method; 8.4 Application guidelines; 8.5 Genetic algorithms - bioinformatics applications; 8.6 Summary of chapter; 8.7 References and further reading; PART 3 FUTURE TECHNIQUES; 9 Genetic Programming; 9.1 Method 9.2 Application guidelines9.3 Bioinformatics applications; 9.4 Background; 9.5 Summary of chapter; 9.6 References; 10 Cellular Automata; 10.1 Method; 10.2 Application guidelines; 10.3 Bioinformatics applications; 10.4 Background; 10.5 Summary of chapter; 10.6 References and further reading; 11 Hybrid Methods; 11.1 Method; 11.2 Neural-genetic algorithm for analysing gene expression data; 11.3 Genetic algorithm and k nearest neighbour hybrid for biochemistry solvation; 11.4 Genetic programming neural networks for determining gene - gene interactions in epidemiology; 11.5 Application guidelines 11.6 Conclusions |
Record Nr. | UNINA-9910877653703321 |
Keedwell Edward | ||
Hoboken, NJ, : Wiley, c2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|