top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Intelligent bioinformatics [[electronic resource] ] : the application of artificial intelligence techniques to bioinformatics problems / / Edward Keedwell and Ajit Narayanan
Intelligent bioinformatics [[electronic resource] ] : the application of artificial intelligence techniques to bioinformatics problems / / Edward Keedwell and Ajit Narayanan
Autore Keedwell Edward
Pubbl/distr/stampa Hoboken, NJ, : Wiley, c2005
Descrizione fisica 1 online resource (294 p.)
Disciplina 570.28563
570/.285
Altri autori (Persone) NarayananAjit <1952->
Soggetto topico Artificial intelligence - Biological applications
Bioinformatics
Soggetto genere / forma Electronic books.
ISBN 1-280-28753-5
9786610287536
0-470-01572-1
0-470-02176-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intelligent Bioinformatics; Contents; Preface; Acknowledgement; PART 1 INTRODUCTION; 1 Introduction to the Basics of Molecular Biology; 1.1 Basic cell architecture; 1.2 The structure, content and scale of deoxyribonucleic acid (DNA); 1.3 History of the human genome; 1.4 Genes and proteins; 1.5 Current knowledge and the 'central dogma'; 1.6 Why proteins are important; 1.7 Gene and cell regulation; 1.8 When cell regulation goes wrong; 1.9 So, what is bioinformatics?; 1.10 Summary of chapter; 1.11 Further reading; 2 Introduction to Problems and Challenges in Bioinformatics; 2.1 Introduction
2.2 Genome2.3 Transcriptome; 2.4 Proteome; 2.5 Interference technology, viruses and the immune system; 2.6 Summary of chapter; 2.7 Further reading; 3 Introduction to Artificial Intelligence and Computer Science; 3.1 Introduction to search; 3.2 Search algorithms; 3.3 Heuristic search methods; 3.4 Optimal search strategies; 3.5 Problems with search techniques; 3.6 Complexity of search; 3.7 Use of graphs in bioinformatics; 3.8 Grammars, languages and automata; 3.9 Classes of problems; 3.10 Summary of chapter; 3.11 Further reading; PART 2 CURRENT TECHNIQUES; 4 Probabilistic Approaches
4.1 Introduction to probability4.2 Bayes' Theorem; 4.3 Bayesian networks; 4.4 Markov networks; 4.5 Summary of chapter; 4.6 References; 5 Nearest Neighbour and Clustering Approaches; 5.1 Introduction; 5.2 Nearest neighbour method; 5.3 Nearest neighbour approach for secondary structure protein folding prediction; 5.4 Clustering; 5.5 Advanced clustering techniques; 5.6 Application guidelines; 5.7 Summary of chapter; 5.8 References; 6 Identification (Decision) Trees; 6.1 Method; 6.2 Gain criterion; 6.3 Over fitting and pruning; 6.4 Application guidelines; 6.5 Bioinformatics applications
6.6 Background6.7 Summary of chapter; 6.8 References; 7 Neural Networks; 7.1 Method; 7.2 Application guidelines; 7.3 Bioinformatics applications; 7.4 Background; 7.5 Summary of chapter; 7.6 References; 8 Genetic Algorithms; 8.1 Single-objective genetic algorithms - method; 8.2 Single-objective genetic algorithms - example; 8.3 Multi-objective genetic algorithms - method; 8.4 Application guidelines; 8.5 Genetic algorithms - bioinformatics applications; 8.6 Summary of chapter; 8.7 References and further reading; PART 3 FUTURE TECHNIQUES; 9 Genetic Programming; 9.1 Method
9.2 Application guidelines9.3 Bioinformatics applications; 9.4 Background; 9.5 Summary of chapter; 9.6 References; 10 Cellular Automata; 10.1 Method; 10.2 Application guidelines; 10.3 Bioinformatics applications; 10.4 Background; 10.5 Summary of chapter; 10.6 References and further reading; 11 Hybrid Methods; 11.1 Method; 11.2 Neural-genetic algorithm for analysing gene expression data; 11.3 Genetic algorithm and k nearest neighbour hybrid for biochemistry solvation; 11.4 Genetic programming neural networks for determining gene - gene interactions in epidemiology; 11.5 Application guidelines
11.6 Conclusions
Record Nr. UNINA-9910143742503321
Keedwell Edward  
Hoboken, NJ, : Wiley, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intelligent bioinformatics [[electronic resource] ] : the application of artificial intelligence techniques to bioinformatics problems / / Edward Keedwell and Ajit Narayanan
Intelligent bioinformatics [[electronic resource] ] : the application of artificial intelligence techniques to bioinformatics problems / / Edward Keedwell and Ajit Narayanan
Autore Keedwell Edward
Pubbl/distr/stampa Hoboken, NJ, : Wiley, c2005
Descrizione fisica 1 online resource (294 p.)
Disciplina 570.28563
570/.285
Altri autori (Persone) NarayananAjit <1952->
Soggetto topico Artificial intelligence - Biological applications
Bioinformatics
ISBN 1-280-28753-5
9786610287536
0-470-01572-1
0-470-02176-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intelligent Bioinformatics; Contents; Preface; Acknowledgement; PART 1 INTRODUCTION; 1 Introduction to the Basics of Molecular Biology; 1.1 Basic cell architecture; 1.2 The structure, content and scale of deoxyribonucleic acid (DNA); 1.3 History of the human genome; 1.4 Genes and proteins; 1.5 Current knowledge and the 'central dogma'; 1.6 Why proteins are important; 1.7 Gene and cell regulation; 1.8 When cell regulation goes wrong; 1.9 So, what is bioinformatics?; 1.10 Summary of chapter; 1.11 Further reading; 2 Introduction to Problems and Challenges in Bioinformatics; 2.1 Introduction
2.2 Genome2.3 Transcriptome; 2.4 Proteome; 2.5 Interference technology, viruses and the immune system; 2.6 Summary of chapter; 2.7 Further reading; 3 Introduction to Artificial Intelligence and Computer Science; 3.1 Introduction to search; 3.2 Search algorithms; 3.3 Heuristic search methods; 3.4 Optimal search strategies; 3.5 Problems with search techniques; 3.6 Complexity of search; 3.7 Use of graphs in bioinformatics; 3.8 Grammars, languages and automata; 3.9 Classes of problems; 3.10 Summary of chapter; 3.11 Further reading; PART 2 CURRENT TECHNIQUES; 4 Probabilistic Approaches
4.1 Introduction to probability4.2 Bayes' Theorem; 4.3 Bayesian networks; 4.4 Markov networks; 4.5 Summary of chapter; 4.6 References; 5 Nearest Neighbour and Clustering Approaches; 5.1 Introduction; 5.2 Nearest neighbour method; 5.3 Nearest neighbour approach for secondary structure protein folding prediction; 5.4 Clustering; 5.5 Advanced clustering techniques; 5.6 Application guidelines; 5.7 Summary of chapter; 5.8 References; 6 Identification (Decision) Trees; 6.1 Method; 6.2 Gain criterion; 6.3 Over fitting and pruning; 6.4 Application guidelines; 6.5 Bioinformatics applications
6.6 Background6.7 Summary of chapter; 6.8 References; 7 Neural Networks; 7.1 Method; 7.2 Application guidelines; 7.3 Bioinformatics applications; 7.4 Background; 7.5 Summary of chapter; 7.6 References; 8 Genetic Algorithms; 8.1 Single-objective genetic algorithms - method; 8.2 Single-objective genetic algorithms - example; 8.3 Multi-objective genetic algorithms - method; 8.4 Application guidelines; 8.5 Genetic algorithms - bioinformatics applications; 8.6 Summary of chapter; 8.7 References and further reading; PART 3 FUTURE TECHNIQUES; 9 Genetic Programming; 9.1 Method
9.2 Application guidelines9.3 Bioinformatics applications; 9.4 Background; 9.5 Summary of chapter; 9.6 References; 10 Cellular Automata; 10.1 Method; 10.2 Application guidelines; 10.3 Bioinformatics applications; 10.4 Background; 10.5 Summary of chapter; 10.6 References and further reading; 11 Hybrid Methods; 11.1 Method; 11.2 Neural-genetic algorithm for analysing gene expression data; 11.3 Genetic algorithm and k nearest neighbour hybrid for biochemistry solvation; 11.4 Genetic programming neural networks for determining gene - gene interactions in epidemiology; 11.5 Application guidelines
11.6 Conclusions
Record Nr. UNINA-9910830706603321
Keedwell Edward  
Hoboken, NJ, : Wiley, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Intelligent bioinformatics : the application of artificial intelligence techniques to bioinformatics problems / / Edward Keedwell and Ajit Narayanan
Intelligent bioinformatics : the application of artificial intelligence techniques to bioinformatics problems / / Edward Keedwell and Ajit Narayanan
Autore Keedwell Edward
Pubbl/distr/stampa Hoboken, NJ, : Wiley, c2005
Descrizione fisica 1 online resource (294 p.)
Disciplina 570/.285
Altri autori (Persone) NarayananAjit <1952->
Soggetto topico Artificial intelligence - Biological applications
Bioinformatics
ISBN 1-280-28753-5
9786610287536
0-470-01572-1
0-470-02176-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intelligent Bioinformatics; Contents; Preface; Acknowledgement; PART 1 INTRODUCTION; 1 Introduction to the Basics of Molecular Biology; 1.1 Basic cell architecture; 1.2 The structure, content and scale of deoxyribonucleic acid (DNA); 1.3 History of the human genome; 1.4 Genes and proteins; 1.5 Current knowledge and the 'central dogma'; 1.6 Why proteins are important; 1.7 Gene and cell regulation; 1.8 When cell regulation goes wrong; 1.9 So, what is bioinformatics?; 1.10 Summary of chapter; 1.11 Further reading; 2 Introduction to Problems and Challenges in Bioinformatics; 2.1 Introduction
2.2 Genome2.3 Transcriptome; 2.4 Proteome; 2.5 Interference technology, viruses and the immune system; 2.6 Summary of chapter; 2.7 Further reading; 3 Introduction to Artificial Intelligence and Computer Science; 3.1 Introduction to search; 3.2 Search algorithms; 3.3 Heuristic search methods; 3.4 Optimal search strategies; 3.5 Problems with search techniques; 3.6 Complexity of search; 3.7 Use of graphs in bioinformatics; 3.8 Grammars, languages and automata; 3.9 Classes of problems; 3.10 Summary of chapter; 3.11 Further reading; PART 2 CURRENT TECHNIQUES; 4 Probabilistic Approaches
4.1 Introduction to probability4.2 Bayes' Theorem; 4.3 Bayesian networks; 4.4 Markov networks; 4.5 Summary of chapter; 4.6 References; 5 Nearest Neighbour and Clustering Approaches; 5.1 Introduction; 5.2 Nearest neighbour method; 5.3 Nearest neighbour approach for secondary structure protein folding prediction; 5.4 Clustering; 5.5 Advanced clustering techniques; 5.6 Application guidelines; 5.7 Summary of chapter; 5.8 References; 6 Identification (Decision) Trees; 6.1 Method; 6.2 Gain criterion; 6.3 Over fitting and pruning; 6.4 Application guidelines; 6.5 Bioinformatics applications
6.6 Background6.7 Summary of chapter; 6.8 References; 7 Neural Networks; 7.1 Method; 7.2 Application guidelines; 7.3 Bioinformatics applications; 7.4 Background; 7.5 Summary of chapter; 7.6 References; 8 Genetic Algorithms; 8.1 Single-objective genetic algorithms - method; 8.2 Single-objective genetic algorithms - example; 8.3 Multi-objective genetic algorithms - method; 8.4 Application guidelines; 8.5 Genetic algorithms - bioinformatics applications; 8.6 Summary of chapter; 8.7 References and further reading; PART 3 FUTURE TECHNIQUES; 9 Genetic Programming; 9.1 Method
9.2 Application guidelines9.3 Bioinformatics applications; 9.4 Background; 9.5 Summary of chapter; 9.6 References; 10 Cellular Automata; 10.1 Method; 10.2 Application guidelines; 10.3 Bioinformatics applications; 10.4 Background; 10.5 Summary of chapter; 10.6 References and further reading; 11 Hybrid Methods; 11.1 Method; 11.2 Neural-genetic algorithm for analysing gene expression data; 11.3 Genetic algorithm and k nearest neighbour hybrid for biochemistry solvation; 11.4 Genetic programming neural networks for determining gene - gene interactions in epidemiology; 11.5 Application guidelines
11.6 Conclusions
Record Nr. UNINA-9910877653703321
Keedwell Edward  
Hoboken, NJ, : Wiley, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui