Chemically reacting flow [[electronic resource] ] : theory and practice / / Robert J. Kee, Michael E. Coltrin, Peter Glarborg
| Chemically reacting flow [[electronic resource] ] : theory and practice / / Robert J. Kee, Michael E. Coltrin, Peter Glarborg |
| Autore | Kee R. J |
| Pubbl/distr/stampa | New York, : Wiley-Interscience, c2003 |
| Descrizione fisica | 1 online resource (884 p.) |
| Disciplina |
541.394
660/.299 |
| Altri autori (Persone) |
ColtrinMichael Elliott <1953->
GlarborgPeter |
| Soggetto topico |
Transport theory
Fluid dynamics Thermodynamics |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-280-25317-7
9786610253173 0-470-30757-9 0-471-46130-X 0-471-46129-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
CHEMICALLY REACTING FLOW; CONTENTS; Preface; Acknowledgments; Nomenclature; 1 Introduction; 1.1 Objectives and Approach; 1.2 Scope; 2 Fluid Kinematics; 2.1 What is a Fluid?; 2.2 The Path to the Conservation Equations; 2.3 The System and the Control Volume; 2.4 Stress and Strain Rate; 2.5 Fluid Strain Rate; 2.6 Vorticity; 2.7 Dilatation; 2.8 The Stress Tensor; 2.9 Stokes' Postulates; 2.10 Transformation from Principal Coordinates; 2.11 Stokes Hypothesis; 2.12 Summary; Problems; 3 The Conservation Equations; 3.1 Mass Continuity; 3.2 Brief Discussion on Equation of State
3.3 Brief Discussion of Viscosity3.4 Navier-Stokes Equations; 3.5 Brief Discussion on Species Diffusion; 3.6 Species Conservation; 3.7 Brief Discussion on Thermal Conductivity; 3.8 Conservation of Energy; 3.9 Mechanical Energy; 3.10 Thermal Energy; 3.11 Perfect Gas and Incompressible Fluid; 3.12 Conservation Equation Summary; 3.13 Pressure Filtering; 3.14 Mathematical Characteristics; 3.15 Summary; Problems; 4 Parallel Flows; 4.1 Nondimensionalization of Physical Problems; 4.2 Couette and Poiseuille Flow; 4.3 Hagen-Poiseuille Flow in a Circular duct; 4.4 Ducts of Noncircular Cross Section 4.5 Hydrodynamic Entry Length4.6 Transient Flow in a Duct; 4.7 Richardson Annular Overshoot; 4.8 Stokes Problems; 4.9 Rotating Shaft in Infinite Media; 4.10 The Graetz Problem; Problems; 5 Similarity and Local Similarity; 5.1 Jeffery-Hamel Flow; 5.2 Planar Wedge Channel; 5.3 Radial-Flow Reactors; 5.4 Spherical Flow between Inclined Disks; 5.5 Radial Flow between Parallel Disks; 5.6 Flow between Plates with Wall Injection; 5.7 General Curvilinear Coordinates; Problems; 6 Stagnation Flows; 6.1 Similarity Assumptions in Axisymmetric Stagnation Flow 6.2 Generalized Steady Axisymmetric Stagnation Flow6.3 Semi-infinite Domain; 6.4 Finite-Gap Stagnation Flow; 6.5 Numerical Solution; 6.6 Rotating Disk; 6.7 Rotating Disk in a Finite Gap; 6.8 Unified View of Axisymmetric Stagnation Flow; 6.9 Planar Stagnation Flows; 6.10 Opposed Flow; 6.11 Tubular Flows; Problems; 7 Channel Flow; 7.1 Scaling Arguments for Boundary Layers; 7.2 General Setting Boundary-Layer Equations; 7.3 Boundary Conditions; 7.4 Von Mises Transformation; 7.5 Introduction to the Method of Lines; 7.6 Channel Boundary Layer as DAEs; 7.7 General Von Mises Boundary Layer 7.8 Hydrodynamic Entry Length7.9 Limitations; 7.10 Solution Software; Problems; 8 Statistical Thermodynamics; 8.1 Kinetic Theory of Gases; 8.2 Molecular Energy Levels; 8.3 The Boltzmann Distribution; 8.4 The Partition Function; 8.5 Statistical Thermodynamics; 8.6 Example Calculations; Problems; 9 Mass Action Kinetics; 9.1 Gibbs Free Energy; 9.2 Equilibrium Constant; 9.3 Mass-Action Kinetics; 9.4 Pressure-Dependent Unimolecular Reactions; 9.5 Bimolecular Chemical Activation Reactions; Problems; 10 Reaction Rate Theories; 10.1 Molecular Collisions; 10.2 Collision Theory Reaction Rate Expression 10.3 Transition-State Theory |
| Record Nr. | UNINA-9910146078703321 |
Kee R. J
|
||
| New York, : Wiley-Interscience, c2003 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Chemically reacting flow [[electronic resource] ] : theory and practice / / Robert J. Kee, Michael E. Coltrin, Peter Glarborg
| Chemically reacting flow [[electronic resource] ] : theory and practice / / Robert J. Kee, Michael E. Coltrin, Peter Glarborg |
| Autore | Kee R. J |
| Pubbl/distr/stampa | New York, : Wiley-Interscience, c2003 |
| Descrizione fisica | 1 online resource (884 p.) |
| Disciplina |
541.394
660/.299 |
| Altri autori (Persone) |
ColtrinMichael Elliott <1953->
GlarborgPeter |
| Soggetto topico |
Transport theory
Fluid dynamics Thermodynamics |
| ISBN |
1-280-25317-7
9786610253173 0-470-30757-9 0-471-46130-X 0-471-46129-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
CHEMICALLY REACTING FLOW; CONTENTS; Preface; Acknowledgments; Nomenclature; 1 Introduction; 1.1 Objectives and Approach; 1.2 Scope; 2 Fluid Kinematics; 2.1 What is a Fluid?; 2.2 The Path to the Conservation Equations; 2.3 The System and the Control Volume; 2.4 Stress and Strain Rate; 2.5 Fluid Strain Rate; 2.6 Vorticity; 2.7 Dilatation; 2.8 The Stress Tensor; 2.9 Stokes' Postulates; 2.10 Transformation from Principal Coordinates; 2.11 Stokes Hypothesis; 2.12 Summary; Problems; 3 The Conservation Equations; 3.1 Mass Continuity; 3.2 Brief Discussion on Equation of State
3.3 Brief Discussion of Viscosity3.4 Navier-Stokes Equations; 3.5 Brief Discussion on Species Diffusion; 3.6 Species Conservation; 3.7 Brief Discussion on Thermal Conductivity; 3.8 Conservation of Energy; 3.9 Mechanical Energy; 3.10 Thermal Energy; 3.11 Perfect Gas and Incompressible Fluid; 3.12 Conservation Equation Summary; 3.13 Pressure Filtering; 3.14 Mathematical Characteristics; 3.15 Summary; Problems; 4 Parallel Flows; 4.1 Nondimensionalization of Physical Problems; 4.2 Couette and Poiseuille Flow; 4.3 Hagen-Poiseuille Flow in a Circular duct; 4.4 Ducts of Noncircular Cross Section 4.5 Hydrodynamic Entry Length4.6 Transient Flow in a Duct; 4.7 Richardson Annular Overshoot; 4.8 Stokes Problems; 4.9 Rotating Shaft in Infinite Media; 4.10 The Graetz Problem; Problems; 5 Similarity and Local Similarity; 5.1 Jeffery-Hamel Flow; 5.2 Planar Wedge Channel; 5.3 Radial-Flow Reactors; 5.4 Spherical Flow between Inclined Disks; 5.5 Radial Flow between Parallel Disks; 5.6 Flow between Plates with Wall Injection; 5.7 General Curvilinear Coordinates; Problems; 6 Stagnation Flows; 6.1 Similarity Assumptions in Axisymmetric Stagnation Flow 6.2 Generalized Steady Axisymmetric Stagnation Flow6.3 Semi-infinite Domain; 6.4 Finite-Gap Stagnation Flow; 6.5 Numerical Solution; 6.6 Rotating Disk; 6.7 Rotating Disk in a Finite Gap; 6.8 Unified View of Axisymmetric Stagnation Flow; 6.9 Planar Stagnation Flows; 6.10 Opposed Flow; 6.11 Tubular Flows; Problems; 7 Channel Flow; 7.1 Scaling Arguments for Boundary Layers; 7.2 General Setting Boundary-Layer Equations; 7.3 Boundary Conditions; 7.4 Von Mises Transformation; 7.5 Introduction to the Method of Lines; 7.6 Channel Boundary Layer as DAEs; 7.7 General Von Mises Boundary Layer 7.8 Hydrodynamic Entry Length7.9 Limitations; 7.10 Solution Software; Problems; 8 Statistical Thermodynamics; 8.1 Kinetic Theory of Gases; 8.2 Molecular Energy Levels; 8.3 The Boltzmann Distribution; 8.4 The Partition Function; 8.5 Statistical Thermodynamics; 8.6 Example Calculations; Problems; 9 Mass Action Kinetics; 9.1 Gibbs Free Energy; 9.2 Equilibrium Constant; 9.3 Mass-Action Kinetics; 9.4 Pressure-Dependent Unimolecular Reactions; 9.5 Bimolecular Chemical Activation Reactions; Problems; 10 Reaction Rate Theories; 10.1 Molecular Collisions; 10.2 Collision Theory Reaction Rate Expression 10.3 Transition-State Theory |
| Record Nr. | UNINA-9910830430003321 |
Kee R. J
|
||
| New York, : Wiley-Interscience, c2003 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Chemically reacting flow [[electronic resource] ] : theory and practice / / Robert J. Kee, Michael E. Coltrin, Peter Glarborg
| Chemically reacting flow [[electronic resource] ] : theory and practice / / Robert J. Kee, Michael E. Coltrin, Peter Glarborg |
| Autore | Kee R. J |
| Pubbl/distr/stampa | New York, : Wiley-Interscience, c2003 |
| Descrizione fisica | 1 online resource (884 p.) |
| Disciplina |
541.394
660/.299 |
| Altri autori (Persone) |
ColtrinMichael Elliott <1953->
GlarborgPeter |
| Soggetto topico |
Transport theory
Fluid dynamics Thermodynamics |
| ISBN |
1-280-25317-7
9786610253173 0-470-30757-9 0-471-46130-X 0-471-46129-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
CHEMICALLY REACTING FLOW; CONTENTS; Preface; Acknowledgments; Nomenclature; 1 Introduction; 1.1 Objectives and Approach; 1.2 Scope; 2 Fluid Kinematics; 2.1 What is a Fluid?; 2.2 The Path to the Conservation Equations; 2.3 The System and the Control Volume; 2.4 Stress and Strain Rate; 2.5 Fluid Strain Rate; 2.6 Vorticity; 2.7 Dilatation; 2.8 The Stress Tensor; 2.9 Stokes' Postulates; 2.10 Transformation from Principal Coordinates; 2.11 Stokes Hypothesis; 2.12 Summary; Problems; 3 The Conservation Equations; 3.1 Mass Continuity; 3.2 Brief Discussion on Equation of State
3.3 Brief Discussion of Viscosity3.4 Navier-Stokes Equations; 3.5 Brief Discussion on Species Diffusion; 3.6 Species Conservation; 3.7 Brief Discussion on Thermal Conductivity; 3.8 Conservation of Energy; 3.9 Mechanical Energy; 3.10 Thermal Energy; 3.11 Perfect Gas and Incompressible Fluid; 3.12 Conservation Equation Summary; 3.13 Pressure Filtering; 3.14 Mathematical Characteristics; 3.15 Summary; Problems; 4 Parallel Flows; 4.1 Nondimensionalization of Physical Problems; 4.2 Couette and Poiseuille Flow; 4.3 Hagen-Poiseuille Flow in a Circular duct; 4.4 Ducts of Noncircular Cross Section 4.5 Hydrodynamic Entry Length4.6 Transient Flow in a Duct; 4.7 Richardson Annular Overshoot; 4.8 Stokes Problems; 4.9 Rotating Shaft in Infinite Media; 4.10 The Graetz Problem; Problems; 5 Similarity and Local Similarity; 5.1 Jeffery-Hamel Flow; 5.2 Planar Wedge Channel; 5.3 Radial-Flow Reactors; 5.4 Spherical Flow between Inclined Disks; 5.5 Radial Flow between Parallel Disks; 5.6 Flow between Plates with Wall Injection; 5.7 General Curvilinear Coordinates; Problems; 6 Stagnation Flows; 6.1 Similarity Assumptions in Axisymmetric Stagnation Flow 6.2 Generalized Steady Axisymmetric Stagnation Flow6.3 Semi-infinite Domain; 6.4 Finite-Gap Stagnation Flow; 6.5 Numerical Solution; 6.6 Rotating Disk; 6.7 Rotating Disk in a Finite Gap; 6.8 Unified View of Axisymmetric Stagnation Flow; 6.9 Planar Stagnation Flows; 6.10 Opposed Flow; 6.11 Tubular Flows; Problems; 7 Channel Flow; 7.1 Scaling Arguments for Boundary Layers; 7.2 General Setting Boundary-Layer Equations; 7.3 Boundary Conditions; 7.4 Von Mises Transformation; 7.5 Introduction to the Method of Lines; 7.6 Channel Boundary Layer as DAEs; 7.7 General Von Mises Boundary Layer 7.8 Hydrodynamic Entry Length7.9 Limitations; 7.10 Solution Software; Problems; 8 Statistical Thermodynamics; 8.1 Kinetic Theory of Gases; 8.2 Molecular Energy Levels; 8.3 The Boltzmann Distribution; 8.4 The Partition Function; 8.5 Statistical Thermodynamics; 8.6 Example Calculations; Problems; 9 Mass Action Kinetics; 9.1 Gibbs Free Energy; 9.2 Equilibrium Constant; 9.3 Mass-Action Kinetics; 9.4 Pressure-Dependent Unimolecular Reactions; 9.5 Bimolecular Chemical Activation Reactions; Problems; 10 Reaction Rate Theories; 10.1 Molecular Collisions; 10.2 Collision Theory Reaction Rate Expression 10.3 Transition-State Theory |
| Record Nr. | UNINA-9911019556403321 |
Kee R. J
|
||
| New York, : Wiley-Interscience, c2003 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||