top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Adaptive optics theory and its application in optical wireless communication / / Xizheng Ke and Pengfei Wu
Adaptive optics theory and its application in optical wireless communication / / Xizheng Ke and Pengfei Wu
Autore Ke Xizheng
Pubbl/distr/stampa Beijing ; ; Singapore : , : Science Press : , : Springer, , [2022]
Descrizione fisica 1 online resource (387 pages)
Disciplina 621.3827
Collana Optical wireless communication theory and technology
Soggetto topico Optical communications
Optics, Adaptive
Wireless communication systems
ISBN 981-16-7901-0
981-16-7900-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Introduction -- Contents -- 1 Introduction -- 1.1 Wireless Optical Coherent Communication Research Status -- 1.1.1 Research Status in the United States -- 1.1.2 Research Status in Europe -- 1.1.3 Research Status of Japan -- 1.1.4 Research Status of China -- 1.2 Adaptive Optics -- 1.2.1 International Research Progress in Adaptive Optics -- 1.2.2 Chinese Research Progress in Adaptive Optics -- 1.2.3 Adaptive Optics Development Trends -- References -- 2 Coherent Optical Communication -- 2.1 Basic Principles of Coherent Optical Communication -- 2.1.1 Fundamentals -- 2.1.2 Homodyne Detection -- 2.1.3 Heterodyne Detection -- 2.1.4 Detection of an Amplitude Modulated Signal -- 2.1.5 Dual-Channel Balanced Detection -- 2.2 Coherent Modulation and Demodulation -- 2.2.1 Optical Modulation -- 2.2.2 Coherent Demodulation -- 2.2.3 System Performance -- 2.3 Factors Affecting Detection Sensitivity -- 2.3.1 Phase Noise -- 2.3.2 Intensity Noise -- 2.3.3 Polarization Noise -- 2.3.4 Key Technologies of Coherent Optical Communication Systems -- 2.4 Spatial Phase Conditions for Optical Heterodyne Detection -- 2.4.1 Spatial Phase Difference Conditions -- 2.4.2 Frequency Conditions -- 2.4.3 Polarization Conditions -- 2.5 Summary and Outlook -- References -- 3 Adaptive Control of Wavefront Distortion -- 3.1 The Basic Principle of Coherent Optical Communication -- 3.2 Adaptive Optics Technology -- 3.2.1 Basic Principles -- 3.2.2 Wavefront Sensor -- 3.2.3 Wavefront Corrector -- 3.2.4 Wavefront Distortion Correction Principle -- 3.2.5 Beam Quality Evaluation Index -- 3.3 Wavefront Correction Algorithm of a Double Deformable Mirror -- 3.3.1 Wavefront Distortion Caused by Atmospheric Turbulence -- 3.3.2 Numerical Analysis of Wavefront Distortion -- 3.3.3 Experiment on Adaptive Control of Wavefront Distortion of Pendulum Mirror and Deformable Mirror.
3.4 Wavefront Distortion Predictive Control -- 3.4.1 Adaptive Optics Model -- 3.4.2 Subspace System Identification -- 3.4.3 Predictive Control Experiment of Wavefront Distortion -- 3.5 System Error Analysis and Suppression -- 3.5.1 Error Analysis of Adaptive Optics System -- 3.5.2 Method of Restraining System Error -- 3.5.3 Comparison of Error Suppression Methods -- 3.6 Adaptive Control of Wavefront Distortion -- 3.6.1 PI Control Algorithm -- 3.6.2 Closed-Loop Control Parameter Adjustment -- 3.7 System Calibration -- 3.7.1 System Composition -- 3.7.2 Push-Pull Calibration -- 3.7.3 Hadamard Matrix Calibration -- 3.8 Closed-Loop -- 3.8.1 Closed-Loop Algorithm -- 3.8.2 Closed-Loop Bandwidth -- References -- 4 Adaptive Optics Calibration Methods -- 4.1 Proportional Integral Algorithm -- 4.1.1 System Response Matrix Calibration -- 4.1.2 Control Principles of PI Algorithm based on Direct Slope Method -- 4.1.3 Control Principles of Iterative Algorithm -- 4.2 Influence of Parameters on PI and Iterative Algorithms -- 4.2.1 PI Control Algorithm Parameters -- 4.2.2 G-S Algorithm Parameters -- 4.2.3 ILC Algorithm Parameters -- 4.2.4 Comparing the PI and Iterative Algorithms -- 4.2.5 Algorithm Operation Volume Analysis -- 4.3 Coherent Optical Communication Wave Front Correction Experiment -- 4.3.1 Analysis of the Closed-Loop Control Effect of the Wave Front Controller -- 4.3.2 Influence of AO Closed Loop Correction on Wave Front PV and Wave Front Root Mean Square -- 4.3.3 Influence of AO Closed-Loop Correction on Coupling Effect and Intermediate Frequency Signal -- References -- 5 Dual Fuzzy Adaptive Proportional Integral Derivative (PID) Control -- 5.1 Dual Fuzzy Adaptive PID Control Principle Based on the Direct Slope Method -- 5.2 Influence of the Input and Output Domains on the Fuzzy Adaptive PID Algorithm -- 5.2.1 Control Voltage.
5.2.2 First Derivative of the Control Voltage -- 5.2.3 Output Domain -- 5.3 Fuzzy Control Experiment -- 5.3.1 Experimental Setup of the AO System -- 5.3.2 Iterative Control Algorithm Calibration Experiment -- 5.3.3 PID Control Algorithm Calibration Experiment -- References -- 6 Wave Front Correction Using the Stochastic Parallel Gradient Descent (SPGD) Algorithm -- 6.1 Wave Front Correction of Distorted Gaussian Beams Using the SPGD Algorithm -- 6.1.1 SPGD Algorithm -- 6.1.2 Optical Transmission Equation and Multiphase Screen Method -- 6.1.3 Simulation of Gaussian Beam Propagation in Atmospheric Turbulence -- 6.1.4 Wave Front Correction under Different Turbulence Intensities -- 6.1.5 Performance Improvement of Coherent Optical Communication System Using AO -- 6.2 Wave Front Distortion Correction Experiment Using the SPGD Algorithm -- 6.2.1 Correction of Static Wave Front Distortion -- 6.2.2 Wave Front Correction of a Heterodyne Detection Coherent Optical Communication System Using the SPGD Algorithm -- References -- 7 Wave Front Distortion Correction Using Deformable Mirror Eigenmode Method -- 7.1 Deformable Mirror Method -- 7.1.1 System Functions -- 7.1.2 Correction Factor -- 7.1.3 Deformable Mirror Intrinsic Mode -- 7.2 Simulating Wave Front Correction Using the Eigenmode Method -- 7.2.1 Calibration Process and Method -- 7.2.2 Deformable Mirror Modeling and Its Eigenmode -- 7.3 Wave Front Correction Simulation Using the Deformable Mirror Eigenmode Method -- 7.3.1 Influence of Turbulence Intensity -- 7.3.2 Fast Stable Convergence -- 7.3.3 Comparison of Different Correction Algorithms -- 7.4 Deformable Mirror Eigenmode Method -- 7.4.1 The Deformable Mirror Influence Function and Its Eigenmode -- 7.4.2 Static Aberration Correction Experiment -- 7.4.3 Field Experiment -- References.
8 Vortex Beam Wave Front Correction Without Using a Wave Front Detector -- 8.1 Vortex Beam Propagation Characteristics Through Atmospheric Turbulence -- 8.1.1 Laguerre-Gaussian (LG) Beam -- 8.1.2 Vortex Beam Transmission Through Atmospheric Turbulence -- 8.1.3 Orbital Angular Momentum (OAM) of the Vortex Beam -- 8.2 Wave Front Correction Using the Phase Difference Method -- 8.2.1 Principles of Wave Front Correction Using the Phase Difference Method -- 8.2.2 Numerical Simulation of Vortex Beam Correction Using the Phase Difference Method -- 8.2.3 Convergence Analysis of the Phase Distribution Algorithm -- 8.3 Vortex Beam Correction Using the Gerchberg-Saxton (GS) Algorithm -- 8.3.1 Correction Principle -- 8.3.2 Simulation Results -- 8.4 Stochastic Parallel Gradient Descent (SPGD) Algorithm -- 8.5 Wave Front Distortion Correction Experiment Using the GS and SPGD Algorithms -- 8.5.1 GS Algorithm -- 8.5.2 SPGD Algorithm -- References -- 9 Liquid Crystal Adaptive Optics -- 9.1 Principles of Liquid Crystal Phase Modulation -- 9.1.1 Structure of a liquid crystal spatial light modulator (LC-SLM) -- 9.1.2 Principles of am LC-SLM -- 9.1.3 Wave Front Distortion Control Method -- 9.2 Phase Calibration Principles of LC-SLM -- 9.2.1 Interference Fringe Movement Method -- 9.2.2 Experimental Principle of the Interference Fringe Movement Method -- 9.3 Phase Calibration Experiment -- 9.3.1 Reflective LC-SLM Phase Calibration Experiment -- 9.3.2 Least Squares Fitting -- 9.4 Reflective LC-SLM Spatial Coherent Optical Communication Wave Front Correction System -- 9.4.1 Wave Front Correction Principle Using a Reflective LC-SLM -- 9.4.2 Basic Composition of the Wave Front Correction System -- 9.5 Principles of Wave Front Measurement -- 9.5.1 Static Wave Front Measurement Using the Transverse Shear Interferometer.
9.5.2 Shack-Hartmann Real-Time Wave Front Measurement Principle -- 9.6 Wave Front Reconstruction -- 9.6.1 Zernike Polynomial -- 9.6.2 Wave Front Reconstruction Using the Zernike Polynomial -- 9.7 Reflective LC-SLM Wave Front Correction Experiment -- 9.7.1 Static Wave Front Correction -- 9.7.2 Field Experiment -- References -- 10 Wave Front Variations of Gaussian Beams with Different Wavelengths Propagating in Atmospheric Turbulence -- 10.1 Beam Propagation in Turbulence -- 10.1.1 Wave Front Fluctuation Variance Corresponding to Different Wavelengths -- 10.1.2 Wave Front Fluctuation of Different Wavelength Beams -- 10.2 Dual Wavelength Adaptive Optics -- 10.2.1 Adaptive Optics (AO) -- 10.2.2 Influence of the Wave Front Sensor on Detection Performance -- 10.3 Influence of the Wave Front Corrector -- 10.3.1 Impact of System Bandwidth -- 10.3.2 Wave Front Correction Coefficient Corresponding to Wavelength -- 10.4 Numerical Simulation and Analysis -- 10.4.1 Numerical Simulation of Global Wave Front Variance -- 10.4.2 Wave Front Correlation -- 10.4.3 Wave Front Spatial Differences on the Receiving Aperture -- 10.4.4 Correction Status with Correction Factor -- 10.4.5 Wave Front Distortion Experiment Corresponding to Different Wavelengths -- References -- 11 Adaptive Control of Large Amplitude Wave Front Distortion and Tilt -- 11.1 Residual Correction of Large Amplitude Wave Front Distortion -- 11.1.1 Theoretical Analysis of Large Amplitude Wave Front Distortion -- 11.1.2 Simulation analysis of large amplitude wave front distortion -- 11.1.3 Experimental Study -- 11.2 Adaptive Optical Wave Front Distortion Correction Using Wave Front Tilt Correction -- 11.2.1 Theoretical wave Front Distortion in Atmospheric Turbulence -- 11.2.2 Wave Front Distortion Experiment in Atmospheric Turbulence -- References.
Record Nr. UNINA-9910743341603321
Ke Xizheng  
Beijing ; ; Singapore : , : Science Press : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Coding Theory in Optical Wireless Communication Systems : Volume II / / by Xizheng Ke
Coding Theory in Optical Wireless Communication Systems : Volume II / / by Xizheng Ke
Autore Ke Xizheng
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (417 pages)
Disciplina 621.382
Collana Optical Wireless Communication Theory and Technology
Soggetto topico Telecommunication
Coding theory
Information theory
Optical communications
Lasers
Communications Engineering, Networks
Microwaves, RF Engineering and Optical Communications
Coding and Information Theory
Optical Communications
Laser
ISBN 9789819723829
9789819723812
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1 Performance analysis of quasi-pulse-position modulation methods -- Chapter 2 Error control based on RS codes -- Chapter 3 Error control based on turbo codes -- Chapter 4 Error control based on LDPC codes -- Chapter 5 Research on polar codes in optical-wireless communication systems.
Record Nr. UNINA-9910881098703321
Ke Xizheng  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Coding Theory in Optical Wireless Communication Systems : Volume I / / by Xizheng Ke
Coding Theory in Optical Wireless Communication Systems : Volume I / / by Xizheng Ke
Autore Ke Xizheng
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (261 pages)
Disciplina 621.382
Collana Optical Wireless Communication Theory and Technology
Soggetto topico Telecommunication
Coding theory
Information theory
Optical communications
Lasers
Communications Engineering, Networks
Microwaves, RF Engineering and Optical Communications
Coding and Information Theory
Optical Communications
Laser
ISBN 9789811998379
9789811998362
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Response characteristics of semiconductor lasers and photodetectors -- Analysis of PPM-Coded Modulated Signals -- MPPM coded modulation signal analysis -- Analysis of DPPM-coded modulation signals -- TCM code-modulation technology -- Wavefront Correction System -- Sixty-four-QAM modulation -- Dual-amplitude pulse-position modulation -- Performance analysis of quasi-pulse-position modulation methods -- Error control based on RS codes -- Error control based on turbo codes -- Error control based on LDPC codes -- Research on polar codes in optical-wireless communication systems -- Channel measurements and error-control experiments -- Adaptive coding based on channel estimation -- Time-domain equalization based on adaptive filtering -- Channel blind equalization based on higher-order statistics.
Record Nr. UNINA-9910878054303321
Ke Xizheng  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Coherent optical wireless communication principle and application / / Xizheng Ke, Jiali Wu
Coherent optical wireless communication principle and application / / Xizheng Ke, Jiali Wu
Autore Ke Xizheng
Pubbl/distr/stampa Singapore : , : Springer, , [2023]
Descrizione fisica 1 online resource (474 pages)
Disciplina 621.3827
Collana Optical wireless communication theory and technology
Soggetto topico Free space optical interconnects
Optical communications
Wireless communication systems
ISBN 981-19-4823-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Introduction -- Contents -- 1 Optical Wirelss Coherent Detection: An Overview -- 1.1 Optical Wireless Coherent Communication -- 1.2 Optical Wireless Communication: Development Status -- 1.3 Research Status at Home and Abroad -- 1.3.1 Inter-Satellite Coherent Optical Detection -- 1.3.2 Coherent Optical Detection in Optical Fiber Communication -- 1.3.3 Free-Space Coherent Detection Communication System -- 1.4 Research Status on Factors Affecting Performance of Free-Space Coherent Detection Systems -- 1.5 Research Status on Factors Affecting Partially Coherent Beam Coherent Detection System -- 1.6 Research Status of Wavefront Correction -- 1.6.1 Research Status of Atmospheric Turbulence Compensation Technology -- 1.6.2 Research Status of Wavefront Correction Technology Abroad -- 1.6.3 Domestic Research Status of Wavefront Correction Technology -- References -- 2 Coherent Optical Communication -- 2.1 Basic Principles of Coherent Optical Communication -- 2.1.1 Fundamentals -- 2.1.2 Homodyne Detection -- 2.1.3 Heterodyne Detection -- 2.1.4 Detection of an Amplitude Modulated Signal -- 2.2 Coherent Modulation and Demodulation -- 2.2.1 Optical Modulation -- 2.2.2 Coherent Demodulation -- 2.2.3 System Performance -- 2.3 Factors Affecting Detection Sensitivity -- 2.3.1 Phase Noise -- 2.3.2 Intensity Noise -- 2.3.3 Polarization Noise -- 2.3.4 Key Technologies of Coherent Optical Communication Systems -- 2.4 Spatial Phase Conditions for Optical Heterodyne Detection -- 2.4.1 Spatial Phase Difference Conditions -- 2.4.2 Frequency Conditions -- 2.4.3 Polarization Conditions -- 2.5 Homodyne Detection and Heterodyne Detection -- 2.5.1 Homodyne Coherent Detection -- 2.5.2 Heterodyne Detection -- 2.6 Composition of Heterodyne Detection System -- 2.6.1 Wavefront Correction Module -- 2.6.2 Polarization Control Module.
2.6.3 Laser Frequency Stabilization Module -- 2.6.4 Balanced Detection Module -- 2.6.5 Coherent Demodulation Module -- 2.7 Performance Analysis of Heterodyne Detection System -- 2.7.1 Signal to Noise Ratio and Detection Sensitivity of Heterodyne Detection System -- 2.7.2 Performance Analysis of Heterodyne Detection System Under Ideal Conditions -- 2.7.3 Performance of Heterodyne Detection System with Optical Alignment Error -- 2.8 Signal-to-Noise Ratio, Bit Error Rate and Detection Sensitivity -- 2.8.1 Signal-to-Noise Ratio of Direct Detection and Heterodyne Detection -- 2.8.2 Bit Error Rate of Direct Detection and Heterodyne Detection -- 2.8.3 Analysis of Detection Sensitivity of Direct and Heterodyne Detection -- 2.9 Influence of Wavefront Distortion on Spatial Coherent Optical Communication -- 2.9.1 Principle of Wavefront Distortion -- 2.9.2 The Effect of Wavefront Distortion -- References -- 3 Spatial Light to Fiber Coupling and Beam Control -- 3.1 Space Optical-Fiber Coupling Technology -- 3.1.1 Ideal Lens-Single-Mode Fiber Coupling -- 3.1.2 Gaussian Beam Coupling -- 3.2 Spatial Plane Wave-Lens-Single Mode Fiber Coupling Under Weakly Turbulent Atmosphere -- 3.2.1 Light Field Distribution and Refractive Index Power Spectrum Under Atmospheric Turbulence -- 3.2.2 Lens Coupling Under Atmospheric Turbulence -- 3.2.3 Relative Variance in Fluctuation of Lens Coupled Optical Power Under Atmospheric Turbulence -- 3.2.4 Spatial Optical Coupling of Lens Array Under Atmospheric Turbulence -- 3.3 Automatic Alignment Algorithm for Spatial Light-Optical-Fiber Coupling -- 3.3.1 Simulated Annealing Algorithm -- 3.3.2 Particle Swarm Optimization -- 3.4 Beam Array Control Based on Maka Antenna -- 3.4.1 Maka Antenna and Existing Problems -- 3.4.2 Array Gaussian Beam Control Based on Maka Antenna.
3.4.3 Coupling Efficiency of Maka Antenna Under Atmospheric Turbulence -- References -- 4 Beam Polarization Control Technology -- 4.1 Advances in Beam Polarization Control -- 4.2 Coherent Optical Communication System with Polarization Control -- 4.2.1 Representation of Light Polarization -- 4.2.2 Polarization Control of Coherent Optical Communication Systems -- 4.3 Coherent Optical Communication Polarization Control Model and Control Algorithm -- 4.3.1 Polarization Control Model for Coherent Optical Communication Systems -- 4.3.2 Simulated Annealing Algorithm in Polarization Control -- 4.3.3 Application of Particle Swarm Algorithm in Polarization Control -- 4.3.4 Design of SPO Algorithm and Its Application in Polarization Control -- 4.3.5 Comparison of the Three Algorithms -- 4.4 Endless Reset of the Polarization Controller -- 4.4.1 Small Step Backward Reset Method and Direct Reset Method -- 4.4.2 Experiment of Direct Reset Method -- 4.5 Experiment of Polarization Control -- 4.5.1 Experimental Setup -- 4.5.2 Polarization-Controlled External Field Experiments -- References -- 5 Double Balanced Detection.-Wavefont Correction System -- 5.1 Domestic and International Development: History and Current Situation -- 5.1.1 Foreign Developments: History and Current Situation -- 5.1.2 Domestic Developments: History and Present Situation -- 5.2 Structure and Principle of Double-Balanced Detection System -- 5.2.1 Classification of 90° Optical Mixers Used in Double-Balanced Detection Techniques -- 5.2.2 Classification of Balanced Detectors -- 5.2.3 Principle of Double-Balanced Detection -- 5.3 Balance Mismatch Analysis of Double-Balanced Detection Technology -- 5.3.1 Effect of Mixer -- 5.3.2 Effect of Balanced Detectors -- 5.4 Common-Mode Rejection Ratio in Double-Balanced Detection System -- 5.4.1 Common-Mode Rejection Ratio -- 5.4.2 Signal-to-Noise Ratio.
5.4.3 Numerical Simulation -- 5.5 Optisystem Simulation of Double-Balanced Detection System -- 5.5.1 Simulation of Double-Balanced Detection System -- 5.5.2 Effect of Power Mismatch on the SNR of Double-Balanced Detection -- 5.5.3 Effect of Time Mismatch on SNR of Double-Balanced Detection -- References -- 6 Adaptive Optics Correction -- 6.1 Research Status of Adaptive Optics System -- 6.2 Adaptive Optics System in Coherent Optical Communication -- 6.2.1 Principles of Adaptive Optics -- 6.2.2 Wavefront Sensor -- 6.2.3 Working Principle of Wavefront Corrector -- 6.3 System Error Analysis -- 6.3.1 Error Analysis of Adaptive Optics System -- 6.3.2 Methods to Suppress Systematic Errors -- 6.4 Implementation of Wavefront Controller -- 6.4.1 Wavefront Reconstruction Theory -- 6.4.2 Measurement of Influence Matrix of Deformable Mirror -- 6.4.3 Realization of Wavefront Control Algorithm -- 6.5 Correction of Wavefront Distortion -- 6.5.1 Analysis of Closed-Loop Control Parameter Adjustment Process -- 6.5.2 Impact of Wavefront Phase Distortion on Mixing Efficiency -- 6.5.3 Impact of Mixing Efficiency on Coherent Optical Communication Systems -- 6.6 Experimental Verification -- 6.6.1 Analysis of Dynamic Characteristics of Wavefront Controller -- 6.6.2 Analysis of Wavefront Distortion Correction Effect -- References -- 7 Wavefont Sensorless Adaptive Optics Correction -- 7.1 Fundamentals of Adaptive Optics -- 7.1.1 Wavefront Corrector -- 7.1.2 Wavefront Controller -- 7.1.3 Stochastic Parallel Gradient Descent Algorithm -- 7.2 Correction of Wavefront of Aberrated Gaussian Beams Using SPGD Algorithm -- 7.2.1 Optical Transmission Equation and Multiphase Screen Method -- 7.2.2 Simulation of Gaussian Beam Transmitted in Atmospheric Turbulence -- 7.2.3 Signal Optical Wavefront Correction at Various Turbulence Intensities.
7.2.4 AO Technology for Improvement of Performance of Coherent Optical Communication System -- 7.3 Experimental Studies -- 7.3.1 Correction of Static Wavefront Distortion Using SPGD Algorithm -- 7.3.2 SPGD Algorithm Wavefront Correction for Outlier Detection Coherent Optical Communication System -- References -- 8 Wavefont Correction Technique of Spatial Coherent Optical Communication with LC-SLM -- 8.1 Phase Calibration of LC-SLM -- 8.1.1 LC-SLM Phase Calibration -- 8.1.2 Structure of LC-SLM -- 8.1.3 Jones Matrix Analysis of LC-SLM Phase Modulation Principle -- 8.2 Working Principle of Phase Calibration of LC-SLM -- 8.2.1 Interference Fringe Shift Method -- 8.2.2 Working Principle of Interference Fringe Movement Method -- 8.3 Phase Calibration Experiments -- 8.3.1 Phase Calibration Experiment of LC-SLM-R -- 8.3.2 Least Squares Fitting -- 8.4 LC-SLM-R Spatial Coherent Optical Communication Wavefront Correction System -- 8.4.1 LC-SLM-R Wavefront Distortion Correction Principle -- 8.4.2 Structure of Wavefront Correction System -- 8.5 Principle of Wavefront Measurement -- 8.5.1 Static Wavefront Measurement of Transverse Shear Interferometer -- 8.5.2 Shack-Hartmann Real-Time Wavefront Measurement Principle -- 8.6 Wavefront Reconstruction -- 8.6.1 Zernike Polynomial -- 8.6.2 Wavefront Reconstruction Based on Zernike Polynomial -- 8.7 LC-SLM-R Wavefront Correction Experiment -- 8.7.1 Static Wavefront Correction Experiment -- 8.7.2 Field Experiment -- References -- 9 Effect of Beam Mode on Coherent Detection System -- 9.1 Basic Theory of Pattern Decomposition -- 9.1.1 Mathematical Model of Incoherent Mode Decomposition -- 9.1.2 Coherent Module Decomposition -- 9.2 Effect of Beam Pattern on Performance of Coherent Detection Systems -- 9.2.1 Mathematical Modeling of Effect of Beam Patterns on Coherent Detection Systems Under Atmospheric Turbulence.
9.2.2 Effect of Beam Pattern on Performance of Coherent Detection Systems.
Record Nr. UNINA-9910633929703321
Ke Xizheng  
Singapore : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Coherent optical wireless communication principle and application / / Xizheng Ke, Jiali Wu
Coherent optical wireless communication principle and application / / Xizheng Ke, Jiali Wu
Autore Ke Xizheng
Pubbl/distr/stampa Singapore : , : Springer, , [2023]
Descrizione fisica 1 online resource (474 pages)
Disciplina 621.3827
Collana Optical wireless communication theory and technology
Soggetto topico Free space optical interconnects
Optical communications
Wireless communication systems
ISBN 981-19-4823-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Introduction -- Contents -- 1 Optical Wirelss Coherent Detection: An Overview -- 1.1 Optical Wireless Coherent Communication -- 1.2 Optical Wireless Communication: Development Status -- 1.3 Research Status at Home and Abroad -- 1.3.1 Inter-Satellite Coherent Optical Detection -- 1.3.2 Coherent Optical Detection in Optical Fiber Communication -- 1.3.3 Free-Space Coherent Detection Communication System -- 1.4 Research Status on Factors Affecting Performance of Free-Space Coherent Detection Systems -- 1.5 Research Status on Factors Affecting Partially Coherent Beam Coherent Detection System -- 1.6 Research Status of Wavefront Correction -- 1.6.1 Research Status of Atmospheric Turbulence Compensation Technology -- 1.6.2 Research Status of Wavefront Correction Technology Abroad -- 1.6.3 Domestic Research Status of Wavefront Correction Technology -- References -- 2 Coherent Optical Communication -- 2.1 Basic Principles of Coherent Optical Communication -- 2.1.1 Fundamentals -- 2.1.2 Homodyne Detection -- 2.1.3 Heterodyne Detection -- 2.1.4 Detection of an Amplitude Modulated Signal -- 2.2 Coherent Modulation and Demodulation -- 2.2.1 Optical Modulation -- 2.2.2 Coherent Demodulation -- 2.2.3 System Performance -- 2.3 Factors Affecting Detection Sensitivity -- 2.3.1 Phase Noise -- 2.3.2 Intensity Noise -- 2.3.3 Polarization Noise -- 2.3.4 Key Technologies of Coherent Optical Communication Systems -- 2.4 Spatial Phase Conditions for Optical Heterodyne Detection -- 2.4.1 Spatial Phase Difference Conditions -- 2.4.2 Frequency Conditions -- 2.4.3 Polarization Conditions -- 2.5 Homodyne Detection and Heterodyne Detection -- 2.5.1 Homodyne Coherent Detection -- 2.5.2 Heterodyne Detection -- 2.6 Composition of Heterodyne Detection System -- 2.6.1 Wavefront Correction Module -- 2.6.2 Polarization Control Module.
2.6.3 Laser Frequency Stabilization Module -- 2.6.4 Balanced Detection Module -- 2.6.5 Coherent Demodulation Module -- 2.7 Performance Analysis of Heterodyne Detection System -- 2.7.1 Signal to Noise Ratio and Detection Sensitivity of Heterodyne Detection System -- 2.7.2 Performance Analysis of Heterodyne Detection System Under Ideal Conditions -- 2.7.3 Performance of Heterodyne Detection System with Optical Alignment Error -- 2.8 Signal-to-Noise Ratio, Bit Error Rate and Detection Sensitivity -- 2.8.1 Signal-to-Noise Ratio of Direct Detection and Heterodyne Detection -- 2.8.2 Bit Error Rate of Direct Detection and Heterodyne Detection -- 2.8.3 Analysis of Detection Sensitivity of Direct and Heterodyne Detection -- 2.9 Influence of Wavefront Distortion on Spatial Coherent Optical Communication -- 2.9.1 Principle of Wavefront Distortion -- 2.9.2 The Effect of Wavefront Distortion -- References -- 3 Spatial Light to Fiber Coupling and Beam Control -- 3.1 Space Optical-Fiber Coupling Technology -- 3.1.1 Ideal Lens-Single-Mode Fiber Coupling -- 3.1.2 Gaussian Beam Coupling -- 3.2 Spatial Plane Wave-Lens-Single Mode Fiber Coupling Under Weakly Turbulent Atmosphere -- 3.2.1 Light Field Distribution and Refractive Index Power Spectrum Under Atmospheric Turbulence -- 3.2.2 Lens Coupling Under Atmospheric Turbulence -- 3.2.3 Relative Variance in Fluctuation of Lens Coupled Optical Power Under Atmospheric Turbulence -- 3.2.4 Spatial Optical Coupling of Lens Array Under Atmospheric Turbulence -- 3.3 Automatic Alignment Algorithm for Spatial Light-Optical-Fiber Coupling -- 3.3.1 Simulated Annealing Algorithm -- 3.3.2 Particle Swarm Optimization -- 3.4 Beam Array Control Based on Maka Antenna -- 3.4.1 Maka Antenna and Existing Problems -- 3.4.2 Array Gaussian Beam Control Based on Maka Antenna.
3.4.3 Coupling Efficiency of Maka Antenna Under Atmospheric Turbulence -- References -- 4 Beam Polarization Control Technology -- 4.1 Advances in Beam Polarization Control -- 4.2 Coherent Optical Communication System with Polarization Control -- 4.2.1 Representation of Light Polarization -- 4.2.2 Polarization Control of Coherent Optical Communication Systems -- 4.3 Coherent Optical Communication Polarization Control Model and Control Algorithm -- 4.3.1 Polarization Control Model for Coherent Optical Communication Systems -- 4.3.2 Simulated Annealing Algorithm in Polarization Control -- 4.3.3 Application of Particle Swarm Algorithm in Polarization Control -- 4.3.4 Design of SPO Algorithm and Its Application in Polarization Control -- 4.3.5 Comparison of the Three Algorithms -- 4.4 Endless Reset of the Polarization Controller -- 4.4.1 Small Step Backward Reset Method and Direct Reset Method -- 4.4.2 Experiment of Direct Reset Method -- 4.5 Experiment of Polarization Control -- 4.5.1 Experimental Setup -- 4.5.2 Polarization-Controlled External Field Experiments -- References -- 5 Double Balanced Detection.-Wavefont Correction System -- 5.1 Domestic and International Development: History and Current Situation -- 5.1.1 Foreign Developments: History and Current Situation -- 5.1.2 Domestic Developments: History and Present Situation -- 5.2 Structure and Principle of Double-Balanced Detection System -- 5.2.1 Classification of 90° Optical Mixers Used in Double-Balanced Detection Techniques -- 5.2.2 Classification of Balanced Detectors -- 5.2.3 Principle of Double-Balanced Detection -- 5.3 Balance Mismatch Analysis of Double-Balanced Detection Technology -- 5.3.1 Effect of Mixer -- 5.3.2 Effect of Balanced Detectors -- 5.4 Common-Mode Rejection Ratio in Double-Balanced Detection System -- 5.4.1 Common-Mode Rejection Ratio -- 5.4.2 Signal-to-Noise Ratio.
5.4.3 Numerical Simulation -- 5.5 Optisystem Simulation of Double-Balanced Detection System -- 5.5.1 Simulation of Double-Balanced Detection System -- 5.5.2 Effect of Power Mismatch on the SNR of Double-Balanced Detection -- 5.5.3 Effect of Time Mismatch on SNR of Double-Balanced Detection -- References -- 6 Adaptive Optics Correction -- 6.1 Research Status of Adaptive Optics System -- 6.2 Adaptive Optics System in Coherent Optical Communication -- 6.2.1 Principles of Adaptive Optics -- 6.2.2 Wavefront Sensor -- 6.2.3 Working Principle of Wavefront Corrector -- 6.3 System Error Analysis -- 6.3.1 Error Analysis of Adaptive Optics System -- 6.3.2 Methods to Suppress Systematic Errors -- 6.4 Implementation of Wavefront Controller -- 6.4.1 Wavefront Reconstruction Theory -- 6.4.2 Measurement of Influence Matrix of Deformable Mirror -- 6.4.3 Realization of Wavefront Control Algorithm -- 6.5 Correction of Wavefront Distortion -- 6.5.1 Analysis of Closed-Loop Control Parameter Adjustment Process -- 6.5.2 Impact of Wavefront Phase Distortion on Mixing Efficiency -- 6.5.3 Impact of Mixing Efficiency on Coherent Optical Communication Systems -- 6.6 Experimental Verification -- 6.6.1 Analysis of Dynamic Characteristics of Wavefront Controller -- 6.6.2 Analysis of Wavefront Distortion Correction Effect -- References -- 7 Wavefont Sensorless Adaptive Optics Correction -- 7.1 Fundamentals of Adaptive Optics -- 7.1.1 Wavefront Corrector -- 7.1.2 Wavefront Controller -- 7.1.3 Stochastic Parallel Gradient Descent Algorithm -- 7.2 Correction of Wavefront of Aberrated Gaussian Beams Using SPGD Algorithm -- 7.2.1 Optical Transmission Equation and Multiphase Screen Method -- 7.2.2 Simulation of Gaussian Beam Transmitted in Atmospheric Turbulence -- 7.2.3 Signal Optical Wavefront Correction at Various Turbulence Intensities.
7.2.4 AO Technology for Improvement of Performance of Coherent Optical Communication System -- 7.3 Experimental Studies -- 7.3.1 Correction of Static Wavefront Distortion Using SPGD Algorithm -- 7.3.2 SPGD Algorithm Wavefront Correction for Outlier Detection Coherent Optical Communication System -- References -- 8 Wavefont Correction Technique of Spatial Coherent Optical Communication with LC-SLM -- 8.1 Phase Calibration of LC-SLM -- 8.1.1 LC-SLM Phase Calibration -- 8.1.2 Structure of LC-SLM -- 8.1.3 Jones Matrix Analysis of LC-SLM Phase Modulation Principle -- 8.2 Working Principle of Phase Calibration of LC-SLM -- 8.2.1 Interference Fringe Shift Method -- 8.2.2 Working Principle of Interference Fringe Movement Method -- 8.3 Phase Calibration Experiments -- 8.3.1 Phase Calibration Experiment of LC-SLM-R -- 8.3.2 Least Squares Fitting -- 8.4 LC-SLM-R Spatial Coherent Optical Communication Wavefront Correction System -- 8.4.1 LC-SLM-R Wavefront Distortion Correction Principle -- 8.4.2 Structure of Wavefront Correction System -- 8.5 Principle of Wavefront Measurement -- 8.5.1 Static Wavefront Measurement of Transverse Shear Interferometer -- 8.5.2 Shack-Hartmann Real-Time Wavefront Measurement Principle -- 8.6 Wavefront Reconstruction -- 8.6.1 Zernike Polynomial -- 8.6.2 Wavefront Reconstruction Based on Zernike Polynomial -- 8.7 LC-SLM-R Wavefront Correction Experiment -- 8.7.1 Static Wavefront Correction Experiment -- 8.7.2 Field Experiment -- References -- 9 Effect of Beam Mode on Coherent Detection System -- 9.1 Basic Theory of Pattern Decomposition -- 9.1.1 Mathematical Model of Incoherent Mode Decomposition -- 9.1.2 Coherent Module Decomposition -- 9.2 Effect of Beam Pattern on Performance of Coherent Detection Systems -- 9.2.1 Mathematical Modeling of Effect of Beam Patterns on Coherent Detection Systems Under Atmospheric Turbulence.
9.2.2 Effect of Beam Pattern on Performance of Coherent Detection Systems.
Record Nr. UNISA-996499860403316
Ke Xizheng  
Singapore : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Generation, transmission, detection, and application of vortex beams / / Xizheng Ke
Generation, transmission, detection, and application of vortex beams / / Xizheng Ke
Autore Ke Xizheng
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Science Press, , [2023]
Descrizione fisica 1 online resource (425 pages)
Disciplina 621.366
Collana Optical Wireless Communication Theory and Technology
Soggetto topico Laser beams
Laser communication systems
Vortex-motion
ISBN 9789819900749
9789819900732
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Vortex-beam spatial-generation method -- Vortex-beam generation using the optical-fiber method -- Superposition characteristics of high-order radial Laguerre–Gaussian beams -- Transmission Characteristics of Vortex Beams -- Adaptive-optics correction technology -- Crosstalk analysis of an OAM-multiplexing system under atmospheric turbulence -- Properties of a superimposed vortex beam -- Vortex-beam detection -- Diffraction characteristics of a vortex beam passing through an optical system -- Propagation characteristics of a partially coherent vortex-beam array in atmospheric turbulence -- Propagation characteristics of scalar partially coherent vortex beams in atmospheric turbulence -- Propagation characteristics of partially coherent vector vortex beams in atmospheric turbulence -- Vortex-beam information exchange.
Record Nr. UNINA-9910717413103321
Ke Xizheng  
Singapore : , : Science Press, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of Optical Wireless Communication / / by Xizheng Ke
Handbook of Optical Wireless Communication / / by Xizheng Ke
Autore Ke Xizheng
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (1881 pages)
Disciplina 621.3827
Soggetto topico Telecommunication
Optical communications
Microwaves, RF Engineering and Optical Communications
Optical Communications
ISBN 9789819715220
9789819715213
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Optical Communication: From Wired to Wireless -- 2. Wireless-Optical Communication -- 3. Research Progress on Satellite Laser-Communication Networks -- 4. Pulse-Like Position-Modulation Technology -- 5. Communication Lasers and Their Modulation Technology -- 6. Research Progress on Passive Modulation in Free-Space Optical Communication -- 7. Detectors and Their Noise Models -- 8. Adaptive-Threshold Detection Technology -- 9. Four-Quadrant Detector Light-Spot Detection Principle -- 10. Optical-Antenna Technologies -- 11. Research progress on one-to-many transmitting antennas for optical-wireless communication -- 12. Acquisition, Pointing, and Tracking -- 13. Spatial optical-fiber coupling technology -- 14. Atmospheric-turbulence models -- 15. Propagation of Partially Coherent Beams in Atmospheric Turbulence -- 16. Progress in Research on Channel Equalization in Wireless-Optical Communication -- 17. Error-correction coding -- 18. Wireless-Optical MIMO Technology and Space–Time Coding -- 19. Space–Time Coding -- 20. Experimental study on wireless-optical coherent communication -- 21. Adaptive-Optics Technology -- 22. Mode Methods in Adaptive Optics -- 23. Optical Phase-Locked Loops -- 24. Deformable Mirrors and Their Control Algorithms -- 25. Liquid-Crystal Spatial Light Modulators and Their Applications -- 26. Mixers -- 27. Principles and Development of Optical Amplifiers -- 28. Key Technologies in Underwater Wireless-Optical Communication -- 29. Principles and Research Progress on LEDs -- 30. Indoor Visible-Light Communication and Its Heterogeneous Fusion Networks -- 31. Indoor Visible-Light Positioning Technology -- 32. Research Progress on Visible-Light Communication Uplinks -- 33. Research Progress on Indoor Visible Light-Source Layouts -- 34. Ultraviolet Non-Line-of-Sight Communication -- 35. Research Progress on OWC/RF Hybrid Communication Systems -- 36. Orbital-Angular-Momentum Beam Techniques -- 37. Research Progress on Aircraft-Relay Wireless-Optical Communications -- 38. Research Progresson Optical-Wireless Communication in Industrial Internets.
Record Nr. UNINA-9910878987803321
Ke Xizheng  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Noise Models in Optical-Wireless Communication Systems / / by Xizheng Ke, Chenghu Ke
Noise Models in Optical-Wireless Communication Systems / / by Xizheng Ke, Chenghu Ke
Autore Ke Xizheng
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (385 pages)
Disciplina 621.3
Altri autori (Persone) KeChenghu
Collana Optical Wireless Communication Theory and Technology
Soggetto topico Telecommunication
Optical communications
Microwaves, RF Engineering and Optical Communications
Optical Communications
ISBN 9789819775507
9819775507
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Detectors and their noise models -- Atmospheric turbulence -- Atmospheric turbulence noise measurement experiment -- Atmospheric turbulence suppression method -- Visible light communication path loss model -- Underwater optical wireless communication channel model -- Noise model of ultraviolet optical communication -- Example of a noise model analysis.
Record Nr. UNINA-9910983362903321
Ke Xizheng  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Optical wireless communication / / Xizheng Ke, Ke Dong
Optical wireless communication / / Xizheng Ke, Ke Dong
Autore Ke Xizheng
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (368 pages)
Disciplina 621.3827
Collana Optical wireless communication theory and technology
Soggetto topico Optical communications
Wireless communication systems
ISBN 981-19-0382-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1 Optical Wireless Communication System -- 1.1 System Model of Optical Wireless Communication -- 1.1.1 Transmitter -- 1.1.2 Receiver -- 1.1.3 Channel -- 1.2 Laser Light Source -- 1.2.1 Principles of a Laser Diode -- 1.2.2 Characteristics of a Laser Diode -- 1.2.3 Nonlinearity Correction -- 1.3 Device Response Characteristics -- 1.3.1 Response Characteristics of a Semiconductor Laser -- 1.3.2 Response Characteristics of a PIN Photodetector -- 1.4 Surface Plasmon Polarization -- 1.4.1 Effect of Different Incident Light Directions on the Light Absorption Performance of Silicon Substrates -- 1.4.2 Electric Field Modulus Distribution on the x-z Cross Section of the Photodetector -- 1.5 Signal Detection -- 1.5.1 Direct Detection -- 1.5.2 Direct Detection Limit -- 1.6 Optical Amplifier -- 1.6.1 Classification of Optical Amplifiers -- 1.6.2 Erbium-Doped Fiber Amplifier -- 1.6.3 Semiconductor Optical Amplifier -- 1.7 Spatial Light to Fiber Coupling Technology -- 1.7.1 Single Lens Coupling -- 1.7.2 Array Coupling -- 1.7.3 Special Fiber Coupling -- 1.8 Optical Antenna and Telescope -- 1.8.1 Refractor Telescope -- 1.8.2 Reflecting Telescope -- 1.8.3 Catadioptric Telescope -- 1.8.4 Integrated Transceiver Optical Antenna -- 1.9 Summary and Prospects -- 1.10 Questions -- 1.11 Exercises -- References -- 2 Coherent Optical Communication -- 2.1 Basic Principles of Coherent Optical Communication -- 2.1.1 Fundamentals -- 2.1.2 Homodyne Detection -- 2.1.3 Heterodyne Detection -- 2.1.4 Detection of an Amplitude Modulated Signal -- 2.1.5 Dual-Channel Balanced Detection -- 2.2 Coherent Modulation and Demodulation -- 2.2.1 Optical Modulation -- 2.2.2 Coherent Demodulation -- 2.2.3 System Performance -- 2.3 Factors Affecting Detection Sensitivity -- 2.3.1 Phase Noise -- 2.3.2 Intensity Noise -- 2.3.3 Polarization Noise.
2.3.4 Key Technologies of Coherent Optical Communication Systems -- 2.4 Spatial Phase Conditions for Optical Heterodyne Detection -- 2.4.1 Spatial Phase Difference Conditions -- 2.4.2 Frequency Conditions -- 2.4.3 Polarization Conditions -- 2.5 Adaptive Optical Wavefront Correction -- 2.5.1 Wavefront Distortion Correction System -- 2.5.2 Wavefront Measurement and Correction -- 2.5.3 Wavefront-Free Measurement System -- 2.6 Summary and Prospects -- 2.7 Questions -- 2.8 Exercises -- References -- 3 Modulation, Demodulation, and Coding -- 3.1 Modulation -- 3.1.1 Basic Concepts -- 3.1.2 Analog and Digital Modulation -- 3.1.3 Direct and Indirect Modulation -- 3.1.4 Internal and External Modulation -- 3.2 External Modulation -- 3.2.1 Electro-Optic Modulation -- 3.2.2 Acousto-Optic Modulation -- 3.2.3 Magneto-Optic Modulation -- 3.3 Reverse Modulation -- 3.3.1 Cat's Eye Effect -- 3.3.2 Principle of Reverse Modulation -- 3.3.3 Cat's Eye Reverse Modulation System -- 3.4 Pulse-Like Position Modulation -- 3.4.1 Pulse-Like Position Modulation -- 3.4.2 Synchronization Technology -- 3.5 Direct Drive of Light Source -- 3.5.1 Single-Ended to Differential Converter -- 3.5.2 Level Adjustment -- 3.5.3 Laser Driver -- 3.5.4 Principle of Optical Feedback -- 3.6 Subcarrier Intensity Modulation -- 3.6.1 Subcarrier Intensity Modulation -- 3.6.2 BPSK Subcarrier Modulation -- 3.6.3 FSK Subcarrier Modulation -- 3.6.4 Intermodulation Distortion and Carrier-to-Noise Ratio -- 3.7 Orthogonal Frequency-Division Multiplexing -- 3.7.1 Basic Principles -- 3.7.2 Implementation of Discrete Fourier Transform in OFDM -- 3.7.3 Protection Interval and Cyclic Prefix -- 3.7.4 Peak-to-Average Power Ratio and Its Reduction Method -- 3.8 Space-Time Coding -- 3.8.1 Evolution of Space-Time Coding -- 3.8.2 Space-Time Coding in Optical Wireless Communication.
3.8.3 Space-Time Decoding in Optical Wireless Communication -- 3.9 Channel Coding -- 3.9.1 Channel Coding -- 3.9.2 Linear Error Correction Code -- 3.9.3 Convolutional Code -- 3.10 Summary and Prospects -- 3.11 Questions -- 3.12 Exercises -- References -- 4 Atmospheric Channel, Channel Estimation, and Channel Equalization -- 4.1 Atmospheric Attenuation -- 4.1.1 Atmospheric Attenuation Coefficient and Transmittance -- 4.1.2 Absorption and Scattering of Atmospheric Molecules -- 4.1.3 Absorption and Scattering of Atmospheric Aerosol Particles -- 4.1.4 Atmospheric Window -- 4.1.5 Estimation of the Attenuation Coefficient -- 4.1.6 Transfer Equation -- 4.2 Atmospheric Turbulence Model -- 4.2.1 Atmospheric Turbulence -- 4.2.2 Atmospheric Turbulence Channel Mode -- 4.2.3 Log-Normal Turbulence Model -- 4.2.4 Gamma-Gamma Turbulence Model -- 4.2.5 Negative Exponential Distributed Turbulence Model -- 4.2.6 Atmospheric Structure Constant -- 4.2.7 Bit Error Rate Caused by Atmospheric Turbulence -- 4.3 Diversity Reception -- 4.3.1 Maximum Ratio Combining -- 4.3.2 Equal Gain Combining -- 4.3.3 Selective Combining -- 4.4 Channel Estimation -- 4.4.1 Concept of Channel Estimation -- 4.4.2 Least Squares Channel Estimation Algorithm -- 4.4.3 MMSE Based Channel Estimation -- 4.5 Channel Equalization -- 4.5.1 ISI and Channel Equalization -- 4.5.2 Time Domain Equalization -- 4.5.3 Linear Equalization -- 4.6 Impacts of Atmospheric Turbulence on BER -- 4.7 Summary and Prospects -- 4.8 Questions -- 4.9 Exercises -- References -- 5 White LED Communication -- 5.1 Light-Emitting Principle of LED -- 5.1.1 White LEDs -- 5.1.2 Light-Emitting Principle of LED -- 5.1.3 Light-Emitting Principle of White LED -- 5.1.4 Lighting Model of White LED -- 5.2 Background Noise Model for Internet of Vehicle -- 5.3 Multiplicative Noise Model -- 5.4 Optimal Layout of Light Source.
5.5 Indoor Visible Light Channel -- 5.6 Receiver and Detection Technology -- 5.6.1 Receiver Front End -- 5.6.2 Receiving Array Design -- 5.7 Uplink of Visible Light Communication -- 5.7.1 Radio Frequency Uplink -- 5.7.2 Infrared Uplink -- 5.7.3 Laser Uplink -- 5.7.4 Visible Light Uplink -- 5.7.5 Isomorphic Uplink -- 5.8 Visible Light Communication Positioning -- 5.8.1 Received Optical Signal Strength Positioning -- 5.8.2 Fingerprint Identification Positioning -- 5.8.3 LED Identity Positioning -- 5.8.4 Visible Light Imaging Positioning -- 5.9 Summary and Prospects -- 5.10 Questions -- 5.11 Exercises -- References -- 6 Underwater Laser Communication -- 6.1 Overview of Underwater Laser Communication -- 6.2 Underwater Laser Communication System -- 6.2.1 Principle of Underwater Laser Communication -- 6.2.2 Underwater Channel -- 6.2.3 Characteristics of Underwater Laser Communication -- 6.3 Submarine Laser Communication -- 6.3.1 Forms of Submarine Laser Communication -- 6.3.2 Transmission of Each Dielectric Layer -- 6.3.3 Time Spreading -- 6.3.4 Energy Equation -- 6.3.5 Trends of Submarine Laser Communication -- 6.4 Summary and Prospects -- 6.5 Questions -- 6.6 Exercises -- References -- 7 Ultraviolet Communication -- 7.1 UV Light and Its Channel Characteristics -- 7.1.1 UV Light -- 7.1.2 Characteristics of UV Light -- 7.1.3 UV Atmospheric Channel -- 7.1.4 Characteristics of UV Atmospheric Channel -- 7.2 Characteristics of NLOS UV Transmission -- 7.2.1 Ellipsoid Coordinate System -- 7.2.2 UV Scattering Communication -- 7.2.3 NLOS Scattering Characteristics -- 7.3 Solar-Blind UV NLOS Communication Network -- 7.3.1 Wireless Mesh Communication Network -- 7.3.2 Wireless UV Mesh Communication Network -- 7.4 Summary and Prospects -- 7.5 Questions -- 7.6 Exercises -- References -- 8 Acquisition, Aiming, and Tracking Technology.
8.1 Acquisition, Pointing, and Tracking System -- 8.1.1 Concepts -- 8.1.2 Operating Principle -- 8.2 Automatic Acquisition -- 8.2.1 Open-Loop Acquisition Mode -- 8.2.2 Scanning Modes -- 8.2.3 Performance of Acquisition -- 8.3 Automatic Tracking -- 8.3.1 Tracking System -- 8.3.2 Compound-Axis Control System -- 8.3.3 Accuracy of a Coarse Tracking Unit -- 8.3.4 Fine Tracking Unit -- 8.4 Fast Alignment Using Two-Dimensional Mirror -- 8.4.1 Introduction -- 8.4.2 Theoretical Model -- 8.4.3 Experiments -- 8.5 Alignment Error -- 8.5.1 Attenuation Model of Optical Power -- 8.5.2 Geometric Attenuation Model of Gaussian Beam with Alignment Error -- 8.5.3 Average Geometric Attenuation Model with Alignment Error -- 8.6 Summary and Prospects -- 8.7 Questions -- 8.8 Exercises -- References -- 9 Partially Coherent Optical Transmission -- 9.1 Basic Parameters of a Light Beam -- 9.1.1 Emission Beam -- 9.1.2 Mutual Interference Function -- 9.1.3 Beam Spreading, Drift, and Intensity Fluctuation -- 9.2 Partially Coherent Light Model -- 9.2.1 Description of Partially Coherent Light -- 9.2.2 Partially Coherent Beam -- 9.3 Beam Propagation in Atmospheric Turbulence -- 9.3.1 Beam Spread and Beam Drift -- 9.3.2 Drift and Spread of a Horizontally Propagating Beam -- 9.3.3 Drift and Spread of a Slant Propagating Beam -- 9.3.4 Fluctuation of Angle of Arrival -- 9.3.5 Influence of Beam Drift and Spread on a Communication System -- 9.4 Summary and Prospects -- 9.5 Questions -- 9.6 Exercises -- References -- 10 Optical Communication in the Future -- 10.1 X-ray Space Optical Communication -- 10.1.1 Backgrounds -- 10.1.2 X-ray Communication System -- 10.1.3 Development Directions and Prospects -- 10.2 Orbital Angular Momentum Multiplexing Communication -- 10.2.1 Vortex Beam -- 10.2.2 Generation of a Vortex Beam -- 10.2.3 OAM Multiplexing Communication System.
10.3 Neutrino Communication.
Record Nr. UNINA-9910739471303321
Ke Xizheng  
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Principles and Applications of Optical Wireless Orthogonal Frequency-Division Multiplexing / / by Xizheng Ke
Principles and Applications of Optical Wireless Orthogonal Frequency-Division Multiplexing / / by Xizheng Ke
Autore Ke Xizheng
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (503 pages)
Disciplina 621.3
Collana Optical Wireless Communication Theory and Technology
Soggetto topico Telecommunication
Optical communications
Microwaves, RF Engineering and Optical Communications
Optical Communications
ISBN 9789819779734
9819779731
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Subcarrier modulation techniques -- Nonlinear characteristics of semiconductor lasers and their correction -- FSO OFDM systems -- Atmospheric channels.-Synchronization technology of OFDM systems -- Peak to average power ratio in an FSO OFDM modulation system -- Definition and statistical properties of a peak to average power ratio -- Channel estimation and channel assignment -- OFDM system based on subcarrier heterodyne detection -- Multi band carrier free amplitude phase modulation.
Record Nr. UNINA-9910983318703321
Ke Xizheng  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui