top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Adaptive optics theory and its application in optical wireless communication / / Xizheng Ke and Pengfei Wu
Adaptive optics theory and its application in optical wireless communication / / Xizheng Ke and Pengfei Wu
Autore Ke Xizheng
Pubbl/distr/stampa Beijing ; ; Singapore : , : Science Press : , : Springer, , [2022]
Descrizione fisica 1 online resource (387 pages)
Disciplina 621.3827
Collana Optical wireless communication theory and technology
Soggetto topico Optical communications
Optics, Adaptive
Wireless communication systems
ISBN 981-16-7901-0
981-16-7900-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Introduction -- Contents -- 1 Introduction -- 1.1 Wireless Optical Coherent Communication Research Status -- 1.1.1 Research Status in the United States -- 1.1.2 Research Status in Europe -- 1.1.3 Research Status of Japan -- 1.1.4 Research Status of China -- 1.2 Adaptive Optics -- 1.2.1 International Research Progress in Adaptive Optics -- 1.2.2 Chinese Research Progress in Adaptive Optics -- 1.2.3 Adaptive Optics Development Trends -- References -- 2 Coherent Optical Communication -- 2.1 Basic Principles of Coherent Optical Communication -- 2.1.1 Fundamentals -- 2.1.2 Homodyne Detection -- 2.1.3 Heterodyne Detection -- 2.1.4 Detection of an Amplitude Modulated Signal -- 2.1.5 Dual-Channel Balanced Detection -- 2.2 Coherent Modulation and Demodulation -- 2.2.1 Optical Modulation -- 2.2.2 Coherent Demodulation -- 2.2.3 System Performance -- 2.3 Factors Affecting Detection Sensitivity -- 2.3.1 Phase Noise -- 2.3.2 Intensity Noise -- 2.3.3 Polarization Noise -- 2.3.4 Key Technologies of Coherent Optical Communication Systems -- 2.4 Spatial Phase Conditions for Optical Heterodyne Detection -- 2.4.1 Spatial Phase Difference Conditions -- 2.4.2 Frequency Conditions -- 2.4.3 Polarization Conditions -- 2.5 Summary and Outlook -- References -- 3 Adaptive Control of Wavefront Distortion -- 3.1 The Basic Principle of Coherent Optical Communication -- 3.2 Adaptive Optics Technology -- 3.2.1 Basic Principles -- 3.2.2 Wavefront Sensor -- 3.2.3 Wavefront Corrector -- 3.2.4 Wavefront Distortion Correction Principle -- 3.2.5 Beam Quality Evaluation Index -- 3.3 Wavefront Correction Algorithm of a Double Deformable Mirror -- 3.3.1 Wavefront Distortion Caused by Atmospheric Turbulence -- 3.3.2 Numerical Analysis of Wavefront Distortion -- 3.3.3 Experiment on Adaptive Control of Wavefront Distortion of Pendulum Mirror and Deformable Mirror.
3.4 Wavefront Distortion Predictive Control -- 3.4.1 Adaptive Optics Model -- 3.4.2 Subspace System Identification -- 3.4.3 Predictive Control Experiment of Wavefront Distortion -- 3.5 System Error Analysis and Suppression -- 3.5.1 Error Analysis of Adaptive Optics System -- 3.5.2 Method of Restraining System Error -- 3.5.3 Comparison of Error Suppression Methods -- 3.6 Adaptive Control of Wavefront Distortion -- 3.6.1 PI Control Algorithm -- 3.6.2 Closed-Loop Control Parameter Adjustment -- 3.7 System Calibration -- 3.7.1 System Composition -- 3.7.2 Push-Pull Calibration -- 3.7.3 Hadamard Matrix Calibration -- 3.8 Closed-Loop -- 3.8.1 Closed-Loop Algorithm -- 3.8.2 Closed-Loop Bandwidth -- References -- 4 Adaptive Optics Calibration Methods -- 4.1 Proportional Integral Algorithm -- 4.1.1 System Response Matrix Calibration -- 4.1.2 Control Principles of PI Algorithm based on Direct Slope Method -- 4.1.3 Control Principles of Iterative Algorithm -- 4.2 Influence of Parameters on PI and Iterative Algorithms -- 4.2.1 PI Control Algorithm Parameters -- 4.2.2 G-S Algorithm Parameters -- 4.2.3 ILC Algorithm Parameters -- 4.2.4 Comparing the PI and Iterative Algorithms -- 4.2.5 Algorithm Operation Volume Analysis -- 4.3 Coherent Optical Communication Wave Front Correction Experiment -- 4.3.1 Analysis of the Closed-Loop Control Effect of the Wave Front Controller -- 4.3.2 Influence of AO Closed Loop Correction on Wave Front PV and Wave Front Root Mean Square -- 4.3.3 Influence of AO Closed-Loop Correction on Coupling Effect and Intermediate Frequency Signal -- References -- 5 Dual Fuzzy Adaptive Proportional Integral Derivative (PID) Control -- 5.1 Dual Fuzzy Adaptive PID Control Principle Based on the Direct Slope Method -- 5.2 Influence of the Input and Output Domains on the Fuzzy Adaptive PID Algorithm -- 5.2.1 Control Voltage.
5.2.2 First Derivative of the Control Voltage -- 5.2.3 Output Domain -- 5.3 Fuzzy Control Experiment -- 5.3.1 Experimental Setup of the AO System -- 5.3.2 Iterative Control Algorithm Calibration Experiment -- 5.3.3 PID Control Algorithm Calibration Experiment -- References -- 6 Wave Front Correction Using the Stochastic Parallel Gradient Descent (SPGD) Algorithm -- 6.1 Wave Front Correction of Distorted Gaussian Beams Using the SPGD Algorithm -- 6.1.1 SPGD Algorithm -- 6.1.2 Optical Transmission Equation and Multiphase Screen Method -- 6.1.3 Simulation of Gaussian Beam Propagation in Atmospheric Turbulence -- 6.1.4 Wave Front Correction under Different Turbulence Intensities -- 6.1.5 Performance Improvement of Coherent Optical Communication System Using AO -- 6.2 Wave Front Distortion Correction Experiment Using the SPGD Algorithm -- 6.2.1 Correction of Static Wave Front Distortion -- 6.2.2 Wave Front Correction of a Heterodyne Detection Coherent Optical Communication System Using the SPGD Algorithm -- References -- 7 Wave Front Distortion Correction Using Deformable Mirror Eigenmode Method -- 7.1 Deformable Mirror Method -- 7.1.1 System Functions -- 7.1.2 Correction Factor -- 7.1.3 Deformable Mirror Intrinsic Mode -- 7.2 Simulating Wave Front Correction Using the Eigenmode Method -- 7.2.1 Calibration Process and Method -- 7.2.2 Deformable Mirror Modeling and Its Eigenmode -- 7.3 Wave Front Correction Simulation Using the Deformable Mirror Eigenmode Method -- 7.3.1 Influence of Turbulence Intensity -- 7.3.2 Fast Stable Convergence -- 7.3.3 Comparison of Different Correction Algorithms -- 7.4 Deformable Mirror Eigenmode Method -- 7.4.1 The Deformable Mirror Influence Function and Its Eigenmode -- 7.4.2 Static Aberration Correction Experiment -- 7.4.3 Field Experiment -- References.
8 Vortex Beam Wave Front Correction Without Using a Wave Front Detector -- 8.1 Vortex Beam Propagation Characteristics Through Atmospheric Turbulence -- 8.1.1 Laguerre-Gaussian (LG) Beam -- 8.1.2 Vortex Beam Transmission Through Atmospheric Turbulence -- 8.1.3 Orbital Angular Momentum (OAM) of the Vortex Beam -- 8.2 Wave Front Correction Using the Phase Difference Method -- 8.2.1 Principles of Wave Front Correction Using the Phase Difference Method -- 8.2.2 Numerical Simulation of Vortex Beam Correction Using the Phase Difference Method -- 8.2.3 Convergence Analysis of the Phase Distribution Algorithm -- 8.3 Vortex Beam Correction Using the Gerchberg-Saxton (GS) Algorithm -- 8.3.1 Correction Principle -- 8.3.2 Simulation Results -- 8.4 Stochastic Parallel Gradient Descent (SPGD) Algorithm -- 8.5 Wave Front Distortion Correction Experiment Using the GS and SPGD Algorithms -- 8.5.1 GS Algorithm -- 8.5.2 SPGD Algorithm -- References -- 9 Liquid Crystal Adaptive Optics -- 9.1 Principles of Liquid Crystal Phase Modulation -- 9.1.1 Structure of a liquid crystal spatial light modulator (LC-SLM) -- 9.1.2 Principles of am LC-SLM -- 9.1.3 Wave Front Distortion Control Method -- 9.2 Phase Calibration Principles of LC-SLM -- 9.2.1 Interference Fringe Movement Method -- 9.2.2 Experimental Principle of the Interference Fringe Movement Method -- 9.3 Phase Calibration Experiment -- 9.3.1 Reflective LC-SLM Phase Calibration Experiment -- 9.3.2 Least Squares Fitting -- 9.4 Reflective LC-SLM Spatial Coherent Optical Communication Wave Front Correction System -- 9.4.1 Wave Front Correction Principle Using a Reflective LC-SLM -- 9.4.2 Basic Composition of the Wave Front Correction System -- 9.5 Principles of Wave Front Measurement -- 9.5.1 Static Wave Front Measurement Using the Transverse Shear Interferometer.
9.5.2 Shack-Hartmann Real-Time Wave Front Measurement Principle -- 9.6 Wave Front Reconstruction -- 9.6.1 Zernike Polynomial -- 9.6.2 Wave Front Reconstruction Using the Zernike Polynomial -- 9.7 Reflective LC-SLM Wave Front Correction Experiment -- 9.7.1 Static Wave Front Correction -- 9.7.2 Field Experiment -- References -- 10 Wave Front Variations of Gaussian Beams with Different Wavelengths Propagating in Atmospheric Turbulence -- 10.1 Beam Propagation in Turbulence -- 10.1.1 Wave Front Fluctuation Variance Corresponding to Different Wavelengths -- 10.1.2 Wave Front Fluctuation of Different Wavelength Beams -- 10.2 Dual Wavelength Adaptive Optics -- 10.2.1 Adaptive Optics (AO) -- 10.2.2 Influence of the Wave Front Sensor on Detection Performance -- 10.3 Influence of the Wave Front Corrector -- 10.3.1 Impact of System Bandwidth -- 10.3.2 Wave Front Correction Coefficient Corresponding to Wavelength -- 10.4 Numerical Simulation and Analysis -- 10.4.1 Numerical Simulation of Global Wave Front Variance -- 10.4.2 Wave Front Correlation -- 10.4.3 Wave Front Spatial Differences on the Receiving Aperture -- 10.4.4 Correction Status with Correction Factor -- 10.4.5 Wave Front Distortion Experiment Corresponding to Different Wavelengths -- References -- 11 Adaptive Control of Large Amplitude Wave Front Distortion and Tilt -- 11.1 Residual Correction of Large Amplitude Wave Front Distortion -- 11.1.1 Theoretical Analysis of Large Amplitude Wave Front Distortion -- 11.1.2 Simulation analysis of large amplitude wave front distortion -- 11.1.3 Experimental Study -- 11.2 Adaptive Optical Wave Front Distortion Correction Using Wave Front Tilt Correction -- 11.2.1 Theoretical wave Front Distortion in Atmospheric Turbulence -- 11.2.2 Wave Front Distortion Experiment in Atmospheric Turbulence -- References.
Record Nr. UNINA-9910743341603321
Ke Xizheng  
Beijing ; ; Singapore : , : Science Press : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Coherent optical wireless communication principle and application / / Xizheng Ke, Jiali Wu
Coherent optical wireless communication principle and application / / Xizheng Ke, Jiali Wu
Autore Ke Xizheng
Pubbl/distr/stampa Singapore : , : Springer, , [2023]
Descrizione fisica 1 online resource (474 pages)
Disciplina 621.3827
Collana Optical wireless communication theory and technology
Soggetto topico Free space optical interconnects
Optical communications
Wireless communication systems
ISBN 981-19-4823-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Introduction -- Contents -- 1 Optical Wirelss Coherent Detection: An Overview -- 1.1 Optical Wireless Coherent Communication -- 1.2 Optical Wireless Communication: Development Status -- 1.3 Research Status at Home and Abroad -- 1.3.1 Inter-Satellite Coherent Optical Detection -- 1.3.2 Coherent Optical Detection in Optical Fiber Communication -- 1.3.3 Free-Space Coherent Detection Communication System -- 1.4 Research Status on Factors Affecting Performance of Free-Space Coherent Detection Systems -- 1.5 Research Status on Factors Affecting Partially Coherent Beam Coherent Detection System -- 1.6 Research Status of Wavefront Correction -- 1.6.1 Research Status of Atmospheric Turbulence Compensation Technology -- 1.6.2 Research Status of Wavefront Correction Technology Abroad -- 1.6.3 Domestic Research Status of Wavefront Correction Technology -- References -- 2 Coherent Optical Communication -- 2.1 Basic Principles of Coherent Optical Communication -- 2.1.1 Fundamentals -- 2.1.2 Homodyne Detection -- 2.1.3 Heterodyne Detection -- 2.1.4 Detection of an Amplitude Modulated Signal -- 2.2 Coherent Modulation and Demodulation -- 2.2.1 Optical Modulation -- 2.2.2 Coherent Demodulation -- 2.2.3 System Performance -- 2.3 Factors Affecting Detection Sensitivity -- 2.3.1 Phase Noise -- 2.3.2 Intensity Noise -- 2.3.3 Polarization Noise -- 2.3.4 Key Technologies of Coherent Optical Communication Systems -- 2.4 Spatial Phase Conditions for Optical Heterodyne Detection -- 2.4.1 Spatial Phase Difference Conditions -- 2.4.2 Frequency Conditions -- 2.4.3 Polarization Conditions -- 2.5 Homodyne Detection and Heterodyne Detection -- 2.5.1 Homodyne Coherent Detection -- 2.5.2 Heterodyne Detection -- 2.6 Composition of Heterodyne Detection System -- 2.6.1 Wavefront Correction Module -- 2.6.2 Polarization Control Module.
2.6.3 Laser Frequency Stabilization Module -- 2.6.4 Balanced Detection Module -- 2.6.5 Coherent Demodulation Module -- 2.7 Performance Analysis of Heterodyne Detection System -- 2.7.1 Signal to Noise Ratio and Detection Sensitivity of Heterodyne Detection System -- 2.7.2 Performance Analysis of Heterodyne Detection System Under Ideal Conditions -- 2.7.3 Performance of Heterodyne Detection System with Optical Alignment Error -- 2.8 Signal-to-Noise Ratio, Bit Error Rate and Detection Sensitivity -- 2.8.1 Signal-to-Noise Ratio of Direct Detection and Heterodyne Detection -- 2.8.2 Bit Error Rate of Direct Detection and Heterodyne Detection -- 2.8.3 Analysis of Detection Sensitivity of Direct and Heterodyne Detection -- 2.9 Influence of Wavefront Distortion on Spatial Coherent Optical Communication -- 2.9.1 Principle of Wavefront Distortion -- 2.9.2 The Effect of Wavefront Distortion -- References -- 3 Spatial Light to Fiber Coupling and Beam Control -- 3.1 Space Optical-Fiber Coupling Technology -- 3.1.1 Ideal Lens-Single-Mode Fiber Coupling -- 3.1.2 Gaussian Beam Coupling -- 3.2 Spatial Plane Wave-Lens-Single Mode Fiber Coupling Under Weakly Turbulent Atmosphere -- 3.2.1 Light Field Distribution and Refractive Index Power Spectrum Under Atmospheric Turbulence -- 3.2.2 Lens Coupling Under Atmospheric Turbulence -- 3.2.3 Relative Variance in Fluctuation of Lens Coupled Optical Power Under Atmospheric Turbulence -- 3.2.4 Spatial Optical Coupling of Lens Array Under Atmospheric Turbulence -- 3.3 Automatic Alignment Algorithm for Spatial Light-Optical-Fiber Coupling -- 3.3.1 Simulated Annealing Algorithm -- 3.3.2 Particle Swarm Optimization -- 3.4 Beam Array Control Based on Maka Antenna -- 3.4.1 Maka Antenna and Existing Problems -- 3.4.2 Array Gaussian Beam Control Based on Maka Antenna.
3.4.3 Coupling Efficiency of Maka Antenna Under Atmospheric Turbulence -- References -- 4 Beam Polarization Control Technology -- 4.1 Advances in Beam Polarization Control -- 4.2 Coherent Optical Communication System with Polarization Control -- 4.2.1 Representation of Light Polarization -- 4.2.2 Polarization Control of Coherent Optical Communication Systems -- 4.3 Coherent Optical Communication Polarization Control Model and Control Algorithm -- 4.3.1 Polarization Control Model for Coherent Optical Communication Systems -- 4.3.2 Simulated Annealing Algorithm in Polarization Control -- 4.3.3 Application of Particle Swarm Algorithm in Polarization Control -- 4.3.4 Design of SPO Algorithm and Its Application in Polarization Control -- 4.3.5 Comparison of the Three Algorithms -- 4.4 Endless Reset of the Polarization Controller -- 4.4.1 Small Step Backward Reset Method and Direct Reset Method -- 4.4.2 Experiment of Direct Reset Method -- 4.5 Experiment of Polarization Control -- 4.5.1 Experimental Setup -- 4.5.2 Polarization-Controlled External Field Experiments -- References -- 5 Double Balanced Detection.-Wavefont Correction System -- 5.1 Domestic and International Development: History and Current Situation -- 5.1.1 Foreign Developments: History and Current Situation -- 5.1.2 Domestic Developments: History and Present Situation -- 5.2 Structure and Principle of Double-Balanced Detection System -- 5.2.1 Classification of 90° Optical Mixers Used in Double-Balanced Detection Techniques -- 5.2.2 Classification of Balanced Detectors -- 5.2.3 Principle of Double-Balanced Detection -- 5.3 Balance Mismatch Analysis of Double-Balanced Detection Technology -- 5.3.1 Effect of Mixer -- 5.3.2 Effect of Balanced Detectors -- 5.4 Common-Mode Rejection Ratio in Double-Balanced Detection System -- 5.4.1 Common-Mode Rejection Ratio -- 5.4.2 Signal-to-Noise Ratio.
5.4.3 Numerical Simulation -- 5.5 Optisystem Simulation of Double-Balanced Detection System -- 5.5.1 Simulation of Double-Balanced Detection System -- 5.5.2 Effect of Power Mismatch on the SNR of Double-Balanced Detection -- 5.5.3 Effect of Time Mismatch on SNR of Double-Balanced Detection -- References -- 6 Adaptive Optics Correction -- 6.1 Research Status of Adaptive Optics System -- 6.2 Adaptive Optics System in Coherent Optical Communication -- 6.2.1 Principles of Adaptive Optics -- 6.2.2 Wavefront Sensor -- 6.2.3 Working Principle of Wavefront Corrector -- 6.3 System Error Analysis -- 6.3.1 Error Analysis of Adaptive Optics System -- 6.3.2 Methods to Suppress Systematic Errors -- 6.4 Implementation of Wavefront Controller -- 6.4.1 Wavefront Reconstruction Theory -- 6.4.2 Measurement of Influence Matrix of Deformable Mirror -- 6.4.3 Realization of Wavefront Control Algorithm -- 6.5 Correction of Wavefront Distortion -- 6.5.1 Analysis of Closed-Loop Control Parameter Adjustment Process -- 6.5.2 Impact of Wavefront Phase Distortion on Mixing Efficiency -- 6.5.3 Impact of Mixing Efficiency on Coherent Optical Communication Systems -- 6.6 Experimental Verification -- 6.6.1 Analysis of Dynamic Characteristics of Wavefront Controller -- 6.6.2 Analysis of Wavefront Distortion Correction Effect -- References -- 7 Wavefont Sensorless Adaptive Optics Correction -- 7.1 Fundamentals of Adaptive Optics -- 7.1.1 Wavefront Corrector -- 7.1.2 Wavefront Controller -- 7.1.3 Stochastic Parallel Gradient Descent Algorithm -- 7.2 Correction of Wavefront of Aberrated Gaussian Beams Using SPGD Algorithm -- 7.2.1 Optical Transmission Equation and Multiphase Screen Method -- 7.2.2 Simulation of Gaussian Beam Transmitted in Atmospheric Turbulence -- 7.2.3 Signal Optical Wavefront Correction at Various Turbulence Intensities.
7.2.4 AO Technology for Improvement of Performance of Coherent Optical Communication System -- 7.3 Experimental Studies -- 7.3.1 Correction of Static Wavefront Distortion Using SPGD Algorithm -- 7.3.2 SPGD Algorithm Wavefront Correction for Outlier Detection Coherent Optical Communication System -- References -- 8 Wavefont Correction Technique of Spatial Coherent Optical Communication with LC-SLM -- 8.1 Phase Calibration of LC-SLM -- 8.1.1 LC-SLM Phase Calibration -- 8.1.2 Structure of LC-SLM -- 8.1.3 Jones Matrix Analysis of LC-SLM Phase Modulation Principle -- 8.2 Working Principle of Phase Calibration of LC-SLM -- 8.2.1 Interference Fringe Shift Method -- 8.2.2 Working Principle of Interference Fringe Movement Method -- 8.3 Phase Calibration Experiments -- 8.3.1 Phase Calibration Experiment of LC-SLM-R -- 8.3.2 Least Squares Fitting -- 8.4 LC-SLM-R Spatial Coherent Optical Communication Wavefront Correction System -- 8.4.1 LC-SLM-R Wavefront Distortion Correction Principle -- 8.4.2 Structure of Wavefront Correction System -- 8.5 Principle of Wavefront Measurement -- 8.5.1 Static Wavefront Measurement of Transverse Shear Interferometer -- 8.5.2 Shack-Hartmann Real-Time Wavefront Measurement Principle -- 8.6 Wavefront Reconstruction -- 8.6.1 Zernike Polynomial -- 8.6.2 Wavefront Reconstruction Based on Zernike Polynomial -- 8.7 LC-SLM-R Wavefront Correction Experiment -- 8.7.1 Static Wavefront Correction Experiment -- 8.7.2 Field Experiment -- References -- 9 Effect of Beam Mode on Coherent Detection System -- 9.1 Basic Theory of Pattern Decomposition -- 9.1.1 Mathematical Model of Incoherent Mode Decomposition -- 9.1.2 Coherent Module Decomposition -- 9.2 Effect of Beam Pattern on Performance of Coherent Detection Systems -- 9.2.1 Mathematical Modeling of Effect of Beam Patterns on Coherent Detection Systems Under Atmospheric Turbulence.
9.2.2 Effect of Beam Pattern on Performance of Coherent Detection Systems.
Record Nr. UNINA-9910633929703321
Ke Xizheng  
Singapore : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Coherent optical wireless communication principle and application / / Xizheng Ke, Jiali Wu
Coherent optical wireless communication principle and application / / Xizheng Ke, Jiali Wu
Autore Ke Xizheng
Pubbl/distr/stampa Singapore : , : Springer, , [2023]
Descrizione fisica 1 online resource (474 pages)
Disciplina 621.3827
Collana Optical wireless communication theory and technology
Soggetto topico Free space optical interconnects
Optical communications
Wireless communication systems
ISBN 981-19-4823-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Introduction -- Contents -- 1 Optical Wirelss Coherent Detection: An Overview -- 1.1 Optical Wireless Coherent Communication -- 1.2 Optical Wireless Communication: Development Status -- 1.3 Research Status at Home and Abroad -- 1.3.1 Inter-Satellite Coherent Optical Detection -- 1.3.2 Coherent Optical Detection in Optical Fiber Communication -- 1.3.3 Free-Space Coherent Detection Communication System -- 1.4 Research Status on Factors Affecting Performance of Free-Space Coherent Detection Systems -- 1.5 Research Status on Factors Affecting Partially Coherent Beam Coherent Detection System -- 1.6 Research Status of Wavefront Correction -- 1.6.1 Research Status of Atmospheric Turbulence Compensation Technology -- 1.6.2 Research Status of Wavefront Correction Technology Abroad -- 1.6.3 Domestic Research Status of Wavefront Correction Technology -- References -- 2 Coherent Optical Communication -- 2.1 Basic Principles of Coherent Optical Communication -- 2.1.1 Fundamentals -- 2.1.2 Homodyne Detection -- 2.1.3 Heterodyne Detection -- 2.1.4 Detection of an Amplitude Modulated Signal -- 2.2 Coherent Modulation and Demodulation -- 2.2.1 Optical Modulation -- 2.2.2 Coherent Demodulation -- 2.2.3 System Performance -- 2.3 Factors Affecting Detection Sensitivity -- 2.3.1 Phase Noise -- 2.3.2 Intensity Noise -- 2.3.3 Polarization Noise -- 2.3.4 Key Technologies of Coherent Optical Communication Systems -- 2.4 Spatial Phase Conditions for Optical Heterodyne Detection -- 2.4.1 Spatial Phase Difference Conditions -- 2.4.2 Frequency Conditions -- 2.4.3 Polarization Conditions -- 2.5 Homodyne Detection and Heterodyne Detection -- 2.5.1 Homodyne Coherent Detection -- 2.5.2 Heterodyne Detection -- 2.6 Composition of Heterodyne Detection System -- 2.6.1 Wavefront Correction Module -- 2.6.2 Polarization Control Module.
2.6.3 Laser Frequency Stabilization Module -- 2.6.4 Balanced Detection Module -- 2.6.5 Coherent Demodulation Module -- 2.7 Performance Analysis of Heterodyne Detection System -- 2.7.1 Signal to Noise Ratio and Detection Sensitivity of Heterodyne Detection System -- 2.7.2 Performance Analysis of Heterodyne Detection System Under Ideal Conditions -- 2.7.3 Performance of Heterodyne Detection System with Optical Alignment Error -- 2.8 Signal-to-Noise Ratio, Bit Error Rate and Detection Sensitivity -- 2.8.1 Signal-to-Noise Ratio of Direct Detection and Heterodyne Detection -- 2.8.2 Bit Error Rate of Direct Detection and Heterodyne Detection -- 2.8.3 Analysis of Detection Sensitivity of Direct and Heterodyne Detection -- 2.9 Influence of Wavefront Distortion on Spatial Coherent Optical Communication -- 2.9.1 Principle of Wavefront Distortion -- 2.9.2 The Effect of Wavefront Distortion -- References -- 3 Spatial Light to Fiber Coupling and Beam Control -- 3.1 Space Optical-Fiber Coupling Technology -- 3.1.1 Ideal Lens-Single-Mode Fiber Coupling -- 3.1.2 Gaussian Beam Coupling -- 3.2 Spatial Plane Wave-Lens-Single Mode Fiber Coupling Under Weakly Turbulent Atmosphere -- 3.2.1 Light Field Distribution and Refractive Index Power Spectrum Under Atmospheric Turbulence -- 3.2.2 Lens Coupling Under Atmospheric Turbulence -- 3.2.3 Relative Variance in Fluctuation of Lens Coupled Optical Power Under Atmospheric Turbulence -- 3.2.4 Spatial Optical Coupling of Lens Array Under Atmospheric Turbulence -- 3.3 Automatic Alignment Algorithm for Spatial Light-Optical-Fiber Coupling -- 3.3.1 Simulated Annealing Algorithm -- 3.3.2 Particle Swarm Optimization -- 3.4 Beam Array Control Based on Maka Antenna -- 3.4.1 Maka Antenna and Existing Problems -- 3.4.2 Array Gaussian Beam Control Based on Maka Antenna.
3.4.3 Coupling Efficiency of Maka Antenna Under Atmospheric Turbulence -- References -- 4 Beam Polarization Control Technology -- 4.1 Advances in Beam Polarization Control -- 4.2 Coherent Optical Communication System with Polarization Control -- 4.2.1 Representation of Light Polarization -- 4.2.2 Polarization Control of Coherent Optical Communication Systems -- 4.3 Coherent Optical Communication Polarization Control Model and Control Algorithm -- 4.3.1 Polarization Control Model for Coherent Optical Communication Systems -- 4.3.2 Simulated Annealing Algorithm in Polarization Control -- 4.3.3 Application of Particle Swarm Algorithm in Polarization Control -- 4.3.4 Design of SPO Algorithm and Its Application in Polarization Control -- 4.3.5 Comparison of the Three Algorithms -- 4.4 Endless Reset of the Polarization Controller -- 4.4.1 Small Step Backward Reset Method and Direct Reset Method -- 4.4.2 Experiment of Direct Reset Method -- 4.5 Experiment of Polarization Control -- 4.5.1 Experimental Setup -- 4.5.2 Polarization-Controlled External Field Experiments -- References -- 5 Double Balanced Detection.-Wavefont Correction System -- 5.1 Domestic and International Development: History and Current Situation -- 5.1.1 Foreign Developments: History and Current Situation -- 5.1.2 Domestic Developments: History and Present Situation -- 5.2 Structure and Principle of Double-Balanced Detection System -- 5.2.1 Classification of 90° Optical Mixers Used in Double-Balanced Detection Techniques -- 5.2.2 Classification of Balanced Detectors -- 5.2.3 Principle of Double-Balanced Detection -- 5.3 Balance Mismatch Analysis of Double-Balanced Detection Technology -- 5.3.1 Effect of Mixer -- 5.3.2 Effect of Balanced Detectors -- 5.4 Common-Mode Rejection Ratio in Double-Balanced Detection System -- 5.4.1 Common-Mode Rejection Ratio -- 5.4.2 Signal-to-Noise Ratio.
5.4.3 Numerical Simulation -- 5.5 Optisystem Simulation of Double-Balanced Detection System -- 5.5.1 Simulation of Double-Balanced Detection System -- 5.5.2 Effect of Power Mismatch on the SNR of Double-Balanced Detection -- 5.5.3 Effect of Time Mismatch on SNR of Double-Balanced Detection -- References -- 6 Adaptive Optics Correction -- 6.1 Research Status of Adaptive Optics System -- 6.2 Adaptive Optics System in Coherent Optical Communication -- 6.2.1 Principles of Adaptive Optics -- 6.2.2 Wavefront Sensor -- 6.2.3 Working Principle of Wavefront Corrector -- 6.3 System Error Analysis -- 6.3.1 Error Analysis of Adaptive Optics System -- 6.3.2 Methods to Suppress Systematic Errors -- 6.4 Implementation of Wavefront Controller -- 6.4.1 Wavefront Reconstruction Theory -- 6.4.2 Measurement of Influence Matrix of Deformable Mirror -- 6.4.3 Realization of Wavefront Control Algorithm -- 6.5 Correction of Wavefront Distortion -- 6.5.1 Analysis of Closed-Loop Control Parameter Adjustment Process -- 6.5.2 Impact of Wavefront Phase Distortion on Mixing Efficiency -- 6.5.3 Impact of Mixing Efficiency on Coherent Optical Communication Systems -- 6.6 Experimental Verification -- 6.6.1 Analysis of Dynamic Characteristics of Wavefront Controller -- 6.6.2 Analysis of Wavefront Distortion Correction Effect -- References -- 7 Wavefont Sensorless Adaptive Optics Correction -- 7.1 Fundamentals of Adaptive Optics -- 7.1.1 Wavefront Corrector -- 7.1.2 Wavefront Controller -- 7.1.3 Stochastic Parallel Gradient Descent Algorithm -- 7.2 Correction of Wavefront of Aberrated Gaussian Beams Using SPGD Algorithm -- 7.2.1 Optical Transmission Equation and Multiphase Screen Method -- 7.2.2 Simulation of Gaussian Beam Transmitted in Atmospheric Turbulence -- 7.2.3 Signal Optical Wavefront Correction at Various Turbulence Intensities.
7.2.4 AO Technology for Improvement of Performance of Coherent Optical Communication System -- 7.3 Experimental Studies -- 7.3.1 Correction of Static Wavefront Distortion Using SPGD Algorithm -- 7.3.2 SPGD Algorithm Wavefront Correction for Outlier Detection Coherent Optical Communication System -- References -- 8 Wavefont Correction Technique of Spatial Coherent Optical Communication with LC-SLM -- 8.1 Phase Calibration of LC-SLM -- 8.1.1 LC-SLM Phase Calibration -- 8.1.2 Structure of LC-SLM -- 8.1.3 Jones Matrix Analysis of LC-SLM Phase Modulation Principle -- 8.2 Working Principle of Phase Calibration of LC-SLM -- 8.2.1 Interference Fringe Shift Method -- 8.2.2 Working Principle of Interference Fringe Movement Method -- 8.3 Phase Calibration Experiments -- 8.3.1 Phase Calibration Experiment of LC-SLM-R -- 8.3.2 Least Squares Fitting -- 8.4 LC-SLM-R Spatial Coherent Optical Communication Wavefront Correction System -- 8.4.1 LC-SLM-R Wavefront Distortion Correction Principle -- 8.4.2 Structure of Wavefront Correction System -- 8.5 Principle of Wavefront Measurement -- 8.5.1 Static Wavefront Measurement of Transverse Shear Interferometer -- 8.5.2 Shack-Hartmann Real-Time Wavefront Measurement Principle -- 8.6 Wavefront Reconstruction -- 8.6.1 Zernike Polynomial -- 8.6.2 Wavefront Reconstruction Based on Zernike Polynomial -- 8.7 LC-SLM-R Wavefront Correction Experiment -- 8.7.1 Static Wavefront Correction Experiment -- 8.7.2 Field Experiment -- References -- 9 Effect of Beam Mode on Coherent Detection System -- 9.1 Basic Theory of Pattern Decomposition -- 9.1.1 Mathematical Model of Incoherent Mode Decomposition -- 9.1.2 Coherent Module Decomposition -- 9.2 Effect of Beam Pattern on Performance of Coherent Detection Systems -- 9.2.1 Mathematical Modeling of Effect of Beam Patterns on Coherent Detection Systems Under Atmospheric Turbulence.
9.2.2 Effect of Beam Pattern on Performance of Coherent Detection Systems.
Record Nr. UNISA-996499860403316
Ke Xizheng  
Singapore : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Generation, transmission, detection, and application of vortex beams / / Xizheng Ke
Generation, transmission, detection, and application of vortex beams / / Xizheng Ke
Autore Ke Xizheng
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Science Press, , [2023]
Descrizione fisica 1 online resource (425 pages)
Disciplina 621.366
Collana Optical Wireless Communication Theory and Technology
Soggetto topico Laser beams
Laser communication systems
Vortex-motion
ISBN 9789819900749
9789819900732
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Vortex-beam spatial-generation method -- Vortex-beam generation using the optical-fiber method -- Superposition characteristics of high-order radial Laguerre–Gaussian beams -- Transmission Characteristics of Vortex Beams -- Adaptive-optics correction technology -- Crosstalk analysis of an OAM-multiplexing system under atmospheric turbulence -- Properties of a superimposed vortex beam -- Vortex-beam detection -- Diffraction characteristics of a vortex beam passing through an optical system -- Propagation characteristics of a partially coherent vortex-beam array in atmospheric turbulence -- Propagation characteristics of scalar partially coherent vortex beams in atmospheric turbulence -- Propagation characteristics of partially coherent vector vortex beams in atmospheric turbulence -- Vortex-beam information exchange.
Record Nr. UNINA-9910717413103321
Ke Xizheng  
Singapore : , : Science Press, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Optical wireless communication / / Xizheng Ke, Ke Dong
Optical wireless communication / / Xizheng Ke, Ke Dong
Autore Ke Xizheng
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (368 pages)
Disciplina 621.3827
Collana Optical wireless communication theory and technology
Soggetto topico Optical communications
Wireless communication systems
ISBN 981-19-0382-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1 Optical Wireless Communication System -- 1.1 System Model of Optical Wireless Communication -- 1.1.1 Transmitter -- 1.1.2 Receiver -- 1.1.3 Channel -- 1.2 Laser Light Source -- 1.2.1 Principles of a Laser Diode -- 1.2.2 Characteristics of a Laser Diode -- 1.2.3 Nonlinearity Correction -- 1.3 Device Response Characteristics -- 1.3.1 Response Characteristics of a Semiconductor Laser -- 1.3.2 Response Characteristics of a PIN Photodetector -- 1.4 Surface Plasmon Polarization -- 1.4.1 Effect of Different Incident Light Directions on the Light Absorption Performance of Silicon Substrates -- 1.4.2 Electric Field Modulus Distribution on the x-z Cross Section of the Photodetector -- 1.5 Signal Detection -- 1.5.1 Direct Detection -- 1.5.2 Direct Detection Limit -- 1.6 Optical Amplifier -- 1.6.1 Classification of Optical Amplifiers -- 1.6.2 Erbium-Doped Fiber Amplifier -- 1.6.3 Semiconductor Optical Amplifier -- 1.7 Spatial Light to Fiber Coupling Technology -- 1.7.1 Single Lens Coupling -- 1.7.2 Array Coupling -- 1.7.3 Special Fiber Coupling -- 1.8 Optical Antenna and Telescope -- 1.8.1 Refractor Telescope -- 1.8.2 Reflecting Telescope -- 1.8.3 Catadioptric Telescope -- 1.8.4 Integrated Transceiver Optical Antenna -- 1.9 Summary and Prospects -- 1.10 Questions -- 1.11 Exercises -- References -- 2 Coherent Optical Communication -- 2.1 Basic Principles of Coherent Optical Communication -- 2.1.1 Fundamentals -- 2.1.2 Homodyne Detection -- 2.1.3 Heterodyne Detection -- 2.1.4 Detection of an Amplitude Modulated Signal -- 2.1.5 Dual-Channel Balanced Detection -- 2.2 Coherent Modulation and Demodulation -- 2.2.1 Optical Modulation -- 2.2.2 Coherent Demodulation -- 2.2.3 System Performance -- 2.3 Factors Affecting Detection Sensitivity -- 2.3.1 Phase Noise -- 2.3.2 Intensity Noise -- 2.3.3 Polarization Noise.
2.3.4 Key Technologies of Coherent Optical Communication Systems -- 2.4 Spatial Phase Conditions for Optical Heterodyne Detection -- 2.4.1 Spatial Phase Difference Conditions -- 2.4.2 Frequency Conditions -- 2.4.3 Polarization Conditions -- 2.5 Adaptive Optical Wavefront Correction -- 2.5.1 Wavefront Distortion Correction System -- 2.5.2 Wavefront Measurement and Correction -- 2.5.3 Wavefront-Free Measurement System -- 2.6 Summary and Prospects -- 2.7 Questions -- 2.8 Exercises -- References -- 3 Modulation, Demodulation, and Coding -- 3.1 Modulation -- 3.1.1 Basic Concepts -- 3.1.2 Analog and Digital Modulation -- 3.1.3 Direct and Indirect Modulation -- 3.1.4 Internal and External Modulation -- 3.2 External Modulation -- 3.2.1 Electro-Optic Modulation -- 3.2.2 Acousto-Optic Modulation -- 3.2.3 Magneto-Optic Modulation -- 3.3 Reverse Modulation -- 3.3.1 Cat's Eye Effect -- 3.3.2 Principle of Reverse Modulation -- 3.3.3 Cat's Eye Reverse Modulation System -- 3.4 Pulse-Like Position Modulation -- 3.4.1 Pulse-Like Position Modulation -- 3.4.2 Synchronization Technology -- 3.5 Direct Drive of Light Source -- 3.5.1 Single-Ended to Differential Converter -- 3.5.2 Level Adjustment -- 3.5.3 Laser Driver -- 3.5.4 Principle of Optical Feedback -- 3.6 Subcarrier Intensity Modulation -- 3.6.1 Subcarrier Intensity Modulation -- 3.6.2 BPSK Subcarrier Modulation -- 3.6.3 FSK Subcarrier Modulation -- 3.6.4 Intermodulation Distortion and Carrier-to-Noise Ratio -- 3.7 Orthogonal Frequency-Division Multiplexing -- 3.7.1 Basic Principles -- 3.7.2 Implementation of Discrete Fourier Transform in OFDM -- 3.7.3 Protection Interval and Cyclic Prefix -- 3.7.4 Peak-to-Average Power Ratio and Its Reduction Method -- 3.8 Space-Time Coding -- 3.8.1 Evolution of Space-Time Coding -- 3.8.2 Space-Time Coding in Optical Wireless Communication.
3.8.3 Space-Time Decoding in Optical Wireless Communication -- 3.9 Channel Coding -- 3.9.1 Channel Coding -- 3.9.2 Linear Error Correction Code -- 3.9.3 Convolutional Code -- 3.10 Summary and Prospects -- 3.11 Questions -- 3.12 Exercises -- References -- 4 Atmospheric Channel, Channel Estimation, and Channel Equalization -- 4.1 Atmospheric Attenuation -- 4.1.1 Atmospheric Attenuation Coefficient and Transmittance -- 4.1.2 Absorption and Scattering of Atmospheric Molecules -- 4.1.3 Absorption and Scattering of Atmospheric Aerosol Particles -- 4.1.4 Atmospheric Window -- 4.1.5 Estimation of the Attenuation Coefficient -- 4.1.6 Transfer Equation -- 4.2 Atmospheric Turbulence Model -- 4.2.1 Atmospheric Turbulence -- 4.2.2 Atmospheric Turbulence Channel Mode -- 4.2.3 Log-Normal Turbulence Model -- 4.2.4 Gamma-Gamma Turbulence Model -- 4.2.5 Negative Exponential Distributed Turbulence Model -- 4.2.6 Atmospheric Structure Constant -- 4.2.7 Bit Error Rate Caused by Atmospheric Turbulence -- 4.3 Diversity Reception -- 4.3.1 Maximum Ratio Combining -- 4.3.2 Equal Gain Combining -- 4.3.3 Selective Combining -- 4.4 Channel Estimation -- 4.4.1 Concept of Channel Estimation -- 4.4.2 Least Squares Channel Estimation Algorithm -- 4.4.3 MMSE Based Channel Estimation -- 4.5 Channel Equalization -- 4.5.1 ISI and Channel Equalization -- 4.5.2 Time Domain Equalization -- 4.5.3 Linear Equalization -- 4.6 Impacts of Atmospheric Turbulence on BER -- 4.7 Summary and Prospects -- 4.8 Questions -- 4.9 Exercises -- References -- 5 White LED Communication -- 5.1 Light-Emitting Principle of LED -- 5.1.1 White LEDs -- 5.1.2 Light-Emitting Principle of LED -- 5.1.3 Light-Emitting Principle of White LED -- 5.1.4 Lighting Model of White LED -- 5.2 Background Noise Model for Internet of Vehicle -- 5.3 Multiplicative Noise Model -- 5.4 Optimal Layout of Light Source.
5.5 Indoor Visible Light Channel -- 5.6 Receiver and Detection Technology -- 5.6.1 Receiver Front End -- 5.6.2 Receiving Array Design -- 5.7 Uplink of Visible Light Communication -- 5.7.1 Radio Frequency Uplink -- 5.7.2 Infrared Uplink -- 5.7.3 Laser Uplink -- 5.7.4 Visible Light Uplink -- 5.7.5 Isomorphic Uplink -- 5.8 Visible Light Communication Positioning -- 5.8.1 Received Optical Signal Strength Positioning -- 5.8.2 Fingerprint Identification Positioning -- 5.8.3 LED Identity Positioning -- 5.8.4 Visible Light Imaging Positioning -- 5.9 Summary and Prospects -- 5.10 Questions -- 5.11 Exercises -- References -- 6 Underwater Laser Communication -- 6.1 Overview of Underwater Laser Communication -- 6.2 Underwater Laser Communication System -- 6.2.1 Principle of Underwater Laser Communication -- 6.2.2 Underwater Channel -- 6.2.3 Characteristics of Underwater Laser Communication -- 6.3 Submarine Laser Communication -- 6.3.1 Forms of Submarine Laser Communication -- 6.3.2 Transmission of Each Dielectric Layer -- 6.3.3 Time Spreading -- 6.3.4 Energy Equation -- 6.3.5 Trends of Submarine Laser Communication -- 6.4 Summary and Prospects -- 6.5 Questions -- 6.6 Exercises -- References -- 7 Ultraviolet Communication -- 7.1 UV Light and Its Channel Characteristics -- 7.1.1 UV Light -- 7.1.2 Characteristics of UV Light -- 7.1.3 UV Atmospheric Channel -- 7.1.4 Characteristics of UV Atmospheric Channel -- 7.2 Characteristics of NLOS UV Transmission -- 7.2.1 Ellipsoid Coordinate System -- 7.2.2 UV Scattering Communication -- 7.2.3 NLOS Scattering Characteristics -- 7.3 Solar-Blind UV NLOS Communication Network -- 7.3.1 Wireless Mesh Communication Network -- 7.3.2 Wireless UV Mesh Communication Network -- 7.4 Summary and Prospects -- 7.5 Questions -- 7.6 Exercises -- References -- 8 Acquisition, Aiming, and Tracking Technology.
8.1 Acquisition, Pointing, and Tracking System -- 8.1.1 Concepts -- 8.1.2 Operating Principle -- 8.2 Automatic Acquisition -- 8.2.1 Open-Loop Acquisition Mode -- 8.2.2 Scanning Modes -- 8.2.3 Performance of Acquisition -- 8.3 Automatic Tracking -- 8.3.1 Tracking System -- 8.3.2 Compound-Axis Control System -- 8.3.3 Accuracy of a Coarse Tracking Unit -- 8.3.4 Fine Tracking Unit -- 8.4 Fast Alignment Using Two-Dimensional Mirror -- 8.4.1 Introduction -- 8.4.2 Theoretical Model -- 8.4.3 Experiments -- 8.5 Alignment Error -- 8.5.1 Attenuation Model of Optical Power -- 8.5.2 Geometric Attenuation Model of Gaussian Beam with Alignment Error -- 8.5.3 Average Geometric Attenuation Model with Alignment Error -- 8.6 Summary and Prospects -- 8.7 Questions -- 8.8 Exercises -- References -- 9 Partially Coherent Optical Transmission -- 9.1 Basic Parameters of a Light Beam -- 9.1.1 Emission Beam -- 9.1.2 Mutual Interference Function -- 9.1.3 Beam Spreading, Drift, and Intensity Fluctuation -- 9.2 Partially Coherent Light Model -- 9.2.1 Description of Partially Coherent Light -- 9.2.2 Partially Coherent Beam -- 9.3 Beam Propagation in Atmospheric Turbulence -- 9.3.1 Beam Spread and Beam Drift -- 9.3.2 Drift and Spread of a Horizontally Propagating Beam -- 9.3.3 Drift and Spread of a Slant Propagating Beam -- 9.3.4 Fluctuation of Angle of Arrival -- 9.3.5 Influence of Beam Drift and Spread on a Communication System -- 9.4 Summary and Prospects -- 9.5 Questions -- 9.6 Exercises -- References -- 10 Optical Communication in the Future -- 10.1 X-ray Space Optical Communication -- 10.1.1 Backgrounds -- 10.1.2 X-ray Communication System -- 10.1.3 Development Directions and Prospects -- 10.2 Orbital Angular Momentum Multiplexing Communication -- 10.2.1 Vortex Beam -- 10.2.2 Generation of a Vortex Beam -- 10.2.3 OAM Multiplexing Communication System.
10.3 Neutrino Communication.
Record Nr. UNINA-9910739471303321
Ke Xizheng  
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Spatial Optical-Fiber Coupling Technology in Optical-Wireless Communication / / by Xizheng Ke
Spatial Optical-Fiber Coupling Technology in Optical-Wireless Communication / / by Xizheng Ke
Autore Ke Xizheng
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (233 pages)
Disciplina 910.5
Collana Optical Wireless Communication Theory and Technology
Soggetto topico Telecommunication
Optical communications
Lasers
Communications Engineering, Networks
Optical Communications
Laser
ISBN 981-9915-25-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Fiber-optic mode theory -- Single-lens single-mode fiber coupling under ideal conditions -- Spatial plane-wave single-lens single-mode fiber coupling in weakly turbulent atmospheres -- Automatic fiber-optic-coupling alignment system -- Mode-conversion methods -- Adaptive-optical wavefront correction.
Record Nr. UNINA-9910735398903321
Ke Xizheng  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui