top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Machine learning in non-stationary environments : introduction to covariate shift adaptation / / Masashi Sugiyama and Motoaki Kawanabe
Machine learning in non-stationary environments : introduction to covariate shift adaptation / / Masashi Sugiyama and Motoaki Kawanabe
Autore Sugiyama Masashi <1974->
Pubbl/distr/stampa Cambridge, Mass., : MIT Press, ©2012
Descrizione fisica 1 online resource (279 p.)
Disciplina 006.3/1
Altri autori (Persone) KawanabeMotoaki
Collana Adaptive computation and machine learning
Soggetto topico Machine learning
Soggetto non controllato COMPUTER SCIENCE/Machine Learning & Neural Networks
COMPUTER SCIENCE/General
COMPUTER SCIENCE/Artificial Intelligence
ISBN 0-262-30043-5
1-280-49922-2
9786613594457
0-262-30122-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Foreword; Preface; I INTRODUCTION; 1 Introduction and Problem Formulation; 1.1 Machine Learning under Covariate Shift; 1.2 Quick Tour of Covariate Shift Adaptation; 1.3 Problem Formulation; 1.4 Structure of This Book; II LEARNING UNDER COVARIATE SHIFT; 2 Function Approximation; 2.1 Importance-Weighting Techniques for Covariate Shift Adaptation; 2.2 Examples of Importance-Weighted Regression Methods; 2.3 Examples of Importance-Weighted Classification Methods; 2.4 Numerical Examples; 2.5 Summary and Discussion; 3 Model Selection; 3.1 Importance-Weighted Akaike Information Criterion
3.2 Importance-Weighted Subspace Information Criterion3.3 Importance-Weighted Cross-Validation; 3.4 Numerical Examples; 3.5 Summary and Discussion; 4 Importance Estimation; 4.1 Kernel Density Estimation; 4.2 Kernel Mean Matching; 4.3 Logistic Regression; 4.4 Kullback-Leibler Importance Estimation Procedure; 4.5 Least-Squares Importance Fitting; 4.6 Unconstrained Least-Squares Importance Fitting; 4.7 Numerical Examples; 4.8 Experimental Comparison; 4.9 Summary; 5 Direct Density-Ratio Estimation with Dimensionality Reduction; 5.1 Density Difference in Hetero-Distributional Subspace
5.2 Characterization of Hetero-Distributional Subspace5.3 Identifying Hetero-Distributional Subspace by Supervised Dimensionality Reduction; 5.4 Using LFDA for Finding Hetero-Distributional Subspace; 5.5 Density-Ratio Estimation in the Hetero-Distributional Subspace; 5.6 Numerical Examples; 5.7 Summary; 6 Relation to Sample Selection Bias; 6.1 Heckman's Sample Selection Model; 6.2 Distributional Change and Sample Selection Bias; 6.3 The Two-Step Algorithm; 6.4 Relation to Covariate Shift Approach; 7 Applications of Covariate Shift Adaptation; 7.1 Brain-Computer Interface
7.2 Speaker Identification7.3 Natural Language Processing; 7.4 Perceived Age Prediction from Face Images; 7.5 Human Activity Recognition from Accelerometric Data; 7.6 Sample Reuse in Reinforcement Learning; III LEARNING CAUSING COVARIATE SHIFT; 8 Active Learning; 8.1 Preliminaries; 8.2 Population-Based Active Learning Methods; 8.3 Numerical Examples of Population-Based Active Learning Methods; 8.4 Pool-Based Active Learning Methods; 8.5 Numerical Examples of Pool-Based Active Learning Methods; 8.6 Summary and Discussion; 9 Active Learning with Model Selection
9.1 Direct Approach and the Active Learning/Model Selection Dilemma9.2 Sequential Approach; 9.3 Batch Approach; 9.4 Ensemble Active Learning; 9.5 Numerical Examples; 9.6 Summary and Discussion; 10 Applications of Active Learning; 10.1 Design of Efficient Exploration Strategies in Reinforcement Learning; 10.2 Wafer Alignment in Semiconductor Exposure Apparatus; IV CONCLUSIONS; 11 Conclusions and Future Prospects; 11.1 Conclusions; 11.2 Future Prospects; Appendix: List of Symbols and Abbreviations; Bibliography; Index
Record Nr. UNINA-9910789928103321
Sugiyama Masashi <1974->  
Cambridge, Mass., : MIT Press, ©2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Machine learning in non-stationary environments : introduction to covariate shift adaptation / / Masashi Sugiyama and Motoaki Kawanabe
Machine learning in non-stationary environments : introduction to covariate shift adaptation / / Masashi Sugiyama and Motoaki Kawanabe
Autore Sugiyama Masashi <1974->
Pubbl/distr/stampa Cambridge, Mass., : MIT Press, ©2012
Descrizione fisica 1 online resource (279 p.)
Disciplina 006.3/1
Altri autori (Persone) KawanabeMotoaki
Collana Adaptive computation and machine learning
Soggetto topico Machine learning
Soggetto non controllato COMPUTER SCIENCE/Machine Learning & Neural Networks
COMPUTER SCIENCE/General
COMPUTER SCIENCE/Artificial Intelligence
ISBN 0-262-30043-5
1-280-49922-2
9786613594457
0-262-30122-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Foreword; Preface; I INTRODUCTION; 1 Introduction and Problem Formulation; 1.1 Machine Learning under Covariate Shift; 1.2 Quick Tour of Covariate Shift Adaptation; 1.3 Problem Formulation; 1.4 Structure of This Book; II LEARNING UNDER COVARIATE SHIFT; 2 Function Approximation; 2.1 Importance-Weighting Techniques for Covariate Shift Adaptation; 2.2 Examples of Importance-Weighted Regression Methods; 2.3 Examples of Importance-Weighted Classification Methods; 2.4 Numerical Examples; 2.5 Summary and Discussion; 3 Model Selection; 3.1 Importance-Weighted Akaike Information Criterion
3.2 Importance-Weighted Subspace Information Criterion3.3 Importance-Weighted Cross-Validation; 3.4 Numerical Examples; 3.5 Summary and Discussion; 4 Importance Estimation; 4.1 Kernel Density Estimation; 4.2 Kernel Mean Matching; 4.3 Logistic Regression; 4.4 Kullback-Leibler Importance Estimation Procedure; 4.5 Least-Squares Importance Fitting; 4.6 Unconstrained Least-Squares Importance Fitting; 4.7 Numerical Examples; 4.8 Experimental Comparison; 4.9 Summary; 5 Direct Density-Ratio Estimation with Dimensionality Reduction; 5.1 Density Difference in Hetero-Distributional Subspace
5.2 Characterization of Hetero-Distributional Subspace5.3 Identifying Hetero-Distributional Subspace by Supervised Dimensionality Reduction; 5.4 Using LFDA for Finding Hetero-Distributional Subspace; 5.5 Density-Ratio Estimation in the Hetero-Distributional Subspace; 5.6 Numerical Examples; 5.7 Summary; 6 Relation to Sample Selection Bias; 6.1 Heckman's Sample Selection Model; 6.2 Distributional Change and Sample Selection Bias; 6.3 The Two-Step Algorithm; 6.4 Relation to Covariate Shift Approach; 7 Applications of Covariate Shift Adaptation; 7.1 Brain-Computer Interface
7.2 Speaker Identification7.3 Natural Language Processing; 7.4 Perceived Age Prediction from Face Images; 7.5 Human Activity Recognition from Accelerometric Data; 7.6 Sample Reuse in Reinforcement Learning; III LEARNING CAUSING COVARIATE SHIFT; 8 Active Learning; 8.1 Preliminaries; 8.2 Population-Based Active Learning Methods; 8.3 Numerical Examples of Population-Based Active Learning Methods; 8.4 Pool-Based Active Learning Methods; 8.5 Numerical Examples of Pool-Based Active Learning Methods; 8.6 Summary and Discussion; 9 Active Learning with Model Selection
9.1 Direct Approach and the Active Learning/Model Selection Dilemma9.2 Sequential Approach; 9.3 Batch Approach; 9.4 Ensemble Active Learning; 9.5 Numerical Examples; 9.6 Summary and Discussion; 10 Applications of Active Learning; 10.1 Design of Efficient Exploration Strategies in Reinforcement Learning; 10.2 Wafer Alignment in Semiconductor Exposure Apparatus; IV CONCLUSIONS; 11 Conclusions and Future Prospects; 11.1 Conclusions; 11.2 Future Prospects; Appendix: List of Symbols and Abbreviations; Bibliography; Index
Record Nr. UNINA-9910825516303321
Sugiyama Masashi <1974->  
Cambridge, Mass., : MIT Press, ©2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui