top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial intelligence and natural language : 9th Conference, AINL 2020, Helsinki, Finland, October 7-9, 2020, Proceedings / / Andrey Filchenkov; Janne Kauttonen; Lidia Pivovarova
Artificial intelligence and natural language : 9th Conference, AINL 2020, Helsinki, Finland, October 7-9, 2020, Proceedings / / Andrey Filchenkov; Janne Kauttonen; Lidia Pivovarova
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2020]
Descrizione fisica 1 online resource (X, 203 p. 67 illus., 36 illus. in color.)
Disciplina 006.35
Collana Communications in Computer and Information Science
Soggetto topico Artificial intelligence
Natural language processing (Computer science)
ISBN 3-030-59082-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto PolSentiLex: Sentiment Detection in Socio-political Discussions on Russian Social Media -- Automatic Detection of Hidden Communities in the Texts of Russian Social Network Corpus -- Dialog Modelling Experiments with Finnish One-to-One Chat Data -- Advances of Transformer-Based Models for News Headline Generation -- An explanation method for black-box machine learning survival models using the Chebyshev distance -- Unsupervised Neural Aspect Extraction with Related Terms -- Predicting Eurovision Song Contest Results using Sentiment Analysis -- Improving Results on Russian Sentiment Datasets -- Dataset for Automatic Summarization of Russian News -- Dataset for evaluation of mathematical reasoning abilities in Russian -- Searching Case Law Judgments by Using Other Judgments as a Query -- GenPR: Generative PageRank framework for Semi-Supervised Learning on citation graphs -- Finding New Multiword Expressions for Existing Thesaurus -- Matching LIWC with Russian Thesauri: An Exploratory Study -- Chinese-Russian Shared Task on Multi-Domain Translation.
Record Nr. UNINA-9910427694303321
Cham, Switzerland : , : Springer, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Artificial intelligence and natural language : 9th Conference, AINL 2020, Helsinki, Finland, October 7-9, 2020, Proceedings / / Andrey Filchenkov; Janne Kauttonen; Lidia Pivovarova
Artificial intelligence and natural language : 9th Conference, AINL 2020, Helsinki, Finland, October 7-9, 2020, Proceedings / / Andrey Filchenkov; Janne Kauttonen; Lidia Pivovarova
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2020]
Descrizione fisica 1 online resource (X, 203 p. 67 illus., 36 illus. in color.)
Disciplina 006.35
Collana Communications in Computer and Information Science
Soggetto topico Artificial intelligence
Natural language processing (Computer science)
ISBN 3-030-59082-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto PolSentiLex: Sentiment Detection in Socio-political Discussions on Russian Social Media -- Automatic Detection of Hidden Communities in the Texts of Russian Social Network Corpus -- Dialog Modelling Experiments with Finnish One-to-One Chat Data -- Advances of Transformer-Based Models for News Headline Generation -- An explanation method for black-box machine learning survival models using the Chebyshev distance -- Unsupervised Neural Aspect Extraction with Related Terms -- Predicting Eurovision Song Contest Results using Sentiment Analysis -- Improving Results on Russian Sentiment Datasets -- Dataset for Automatic Summarization of Russian News -- Dataset for evaluation of mathematical reasoning abilities in Russian -- Searching Case Law Judgments by Using Other Judgments as a Query -- GenPR: Generative PageRank framework for Semi-Supervised Learning on citation graphs -- Finding New Multiword Expressions for Existing Thesaurus -- Matching LIWC with Russian Thesauri: An Exploratory Study -- Chinese-Russian Shared Task on Multi-Domain Translation.
Record Nr. UNISA-996465346503316
Cham, Switzerland : , : Springer, , [2020]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui