Applications of Evolutionary Computation [[electronic resource] ] : 22nd International Conference, EvoApplications 2019, Held as Part of EvoStar 2019, Leipzig, Germany, April 24–26, 2019, Proceedings / / edited by Paul Kaufmann, Pedro A. Castillo |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (XIX, 642 p. 377 illus., 177 illus. in color.) |
Disciplina | 005.1 |
Collana | Theoretical Computer Science and General Issues |
Soggetto topico |
Algorithms
Artificial intelligence Computer arithmetic and logic units Computer networks Computers, Special purpose Computer science—Mathematics Artificial Intelligence Arithmetic and Logic Structures Computer Communication Networks Special Purpose and Application-Based Systems Mathematics of Computing |
ISBN | 3-030-16692-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Engineering and Real World Applications -- Games -- General -- Image and Signal Processing -- Life Sciences -- Networks and Distributed Systems -- Neuroevolution and Data Analytics -- Numerical Optimization: Theory, Benchmarks, and Applications -- Robotics. |
Record Nr. | UNISA-996466277103316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Applications of Evolutionary Computation : 22nd International Conference, EvoApplications 2019, Held as Part of EvoStar 2019, Leipzig, Germany, April 24–26, 2019, Proceedings / / edited by Paul Kaufmann, Pedro A. Castillo |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (XIX, 642 p. 377 illus., 177 illus. in color.) |
Disciplina | 005.1 |
Collana | Theoretical Computer Science and General Issues |
Soggetto topico |
Algorithms
Artificial intelligence Computer arithmetic and logic units Computer networks Computers, Special purpose Computer science—Mathematics Artificial Intelligence Arithmetic and Logic Structures Computer Communication Networks Special Purpose and Application-Based Systems Mathematics of Computing |
ISBN | 3-030-16692-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Engineering and Real World Applications -- Games -- General -- Image and Signal Processing -- Life Sciences -- Networks and Distributed Systems -- Neuroevolution and Data Analytics -- Numerical Optimization: Theory, Benchmarks, and Applications -- Robotics. |
Record Nr. | UNINA-9910337852003321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Applications of Evolutionary Computation [[electronic resource] ] : 21st International Conference, EvoApplications 2018, Parma, Italy, April 4-6, 2018, Proceedings / / edited by Kevin Sim, Paul Kaufmann |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (XXII, 917 p. 305 illus.) |
Disciplina | 005.432 |
Collana | Theoretical Computer Science and General Issues |
Soggetto topico |
Algorithms
Artificial intelligence Computer vision Pattern recognition systems Computer networks Computers, Special purpose Artificial Intelligence Computer Vision Automated Pattern Recognition Computer Communication Networks Special Purpose and Application-Based Systems |
ISBN | 3-319-77538-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Volume Editors -- Preface -- Organization -- Contents -- EvoBAFIN -- Multi-objective Cooperative Coevolutionary Algorithm with Dynamic Species-Size Strategy -- Abstract -- 1 Introduction -- 2 Multi-objective CCA with Dynamic Problem Decomposition -- 2.1 Dynamic Species-Size -- 2.2 Dynamic Process -- 2.3 Collaborator Selection Method -- 2.4 DMOCCA Main Algorithm -- 3 Formulation of CCMVPOP -- 4 Computational Experiments -- 4.1 Data -- 4.2 Parameter Setting -- 4.3 Computational Results -- 4.4 Effects of Implementing the Dynamic Species-Size Strategy -- 5 Conclusions -- References -- EvoBIO -- Task Classification Using Topological Graph Features for Functional M/EEG Brain Connectomics -- 1 Introduction -- 2 Model Selection as an Optimization Problem -- 3 Models and Methods -- 4 Experiments and Results -- 5 Conclusions and Future Research Lines -- References -- Feature Selection for Detecting Gene-Gene Interactions in Genome-Wide Association Studies -- 1 Introduction -- 2 Methods -- 2.1 Datasets -- 2.2 Quantification of Pairwise Interactions Using Information Gain -- 2.3 Feature Selection Algorithms -- 3 Results -- 3.1 Feature Selection Algorithms on the Simulated Data -- 3.2 Feature Selection Algorithms on the CRC Data -- 4 Discussion -- References -- Fitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic Algorithm -- 1 Introduction -- 2 Materials and Methods -- 2.1 Images Dataset -- 2.2 Proposed Algorithm -- 2.3 Evaluation Metrics -- 3 Results and Discussion -- 4 Conclusion -- References -- Mutual Information Iterated Local Search: A Wrapper-Filter Hybrid for Feature Selection in Brain Computer Interfaces -- 1 Introduction -- 2 Background -- 2.1 Filters -- 2.2 Wrappers -- 2.3 Hybrid Approaches -- 3 Proposed Method -- 3.1 Iterated Local Search.
3.2 Minimal Redundancy Maximal Relevance-Iterated Local Search -- 4 Methodology -- 4.1 Datasets -- 4.2 Features -- 4.3 Solution Size -- 4.4 Classifiers -- 5 Results and Discussion -- 6 Conclusion -- References -- Automatic Segmentation of Neurons in 3D Samples of Human Brain Cortex -- Abstract -- 1 Introduction -- 2 Materials and Methods -- 2.1 Sample Collection and Preparation -- 2.2 Imaging: Two-Photon Fluorescence Microscopy -- 2.3 Image Stitching -- 2.4 Pattern-Level Segmentation by CNN -- 3 Results -- 4 Discussion and Conclusion -- Acknowledgements -- References -- Analysis of Relevance and Redundance on Topoisomerase 2b (TOP2B) Binding Sites: A Feature Selection Approach -- 1 Introduction -- 2 Materials and Methods -- 2.1 Data -- 2.2 Classification -- 2.3 Feature Selection -- 3 Experimental Results -- 3.1 Baseline Classification Results -- 3.2 Feature Selection -- 4 Feature Analysis -- 4.1 Baseline Classification -- 4.2 Feature Selection -- 5 Conclusions and Future Works -- References -- EvoCOMNET -- Multimodal Transportation Network Design Using Physarum Polycephalum-Inspired Multi-agent Computation Methods -- 1 Introduction -- 2 Previous Work -- 3 Research Methodology -- 3.1 Model Background -- 3.2 The Multimodal Physarum Model -- 4 Model Evaluation -- 4.1 Basic Network Performance Analysis -- 4.2 Implementation in Real-World Context -- 5 Conclusions and Future Research -- References -- Improving Multi-objective Evolutionary Influence Maximization in Social Networks -- 1 Introduction -- 2 Background and Related Work -- 2.1 Models for Influence Propagation and Problem Formulation -- 2.2 Existing Solutions for Influence Maximization -- 3 Proposed Approach -- 4 Experimental Evaluation -- 4.1 Benchmarks -- 4.2 Experimental Results -- 5 Conclusions -- References -- Social Relevance Index for Studying Communities in a Facebook Group of Patients. 1 Introduction -- 2 Related Works -- 3 The Relevance Index Approach -- 4 HyReSS: Hybrid Relevant Set Search -- 4.1 Genetic Algorithm -- 4.2 Variable Relevance-Based Local Search -- 4.3 Variable Frequency-Based Search -- 4.4 CRS Cardinality-Based Search -- 4.5 Merging -- 5 Experimental Results -- 5.1 Dataset Description -- 5.2 HyReSS Performances -- 5.3 Social Network Results -- 6 Conclusion -- References -- A Fast Metaheuristic for the Design of DVB-T2 Networks -- 1 Introduction -- 2 An Optimization Model for DVB-T2 Network Design -- 2.1 Strengthening the Formulation DVB-MILP -- 3 A Metaheuristic for DVB-T2 Network Design -- 3.1 Feasible Solution Construction -- 3.2 MILP Improvement Heuristic -- 3.3 The Complete Algorithm -- 4 Computational Tests -- 5 Conclusion and Future Work -- References -- EvoCOMPLEX -- A Genetic Algorithm for Community Detection in Attributed Graphs -- 1 Introduction -- 2 Problem Definition -- 3 @NetGA Description -- 4 Experimental Evaluation -- 4.1 Datasets -- 4.2 Algorithms in Comparison -- 4.3 Evaluation Measures -- 4.4 Results -- 5 Conclusion -- References -- Maximizing the Effect of Local Disturbance in the Dynamics of Opinion Formation -- Abstract -- 1 Introduction -- 2 Model -- 3 Genetic Algorithm -- 4 Result -- 5 Conclusion -- Acknowledgement -- References -- Accelerating the Computation of Solutions in Resource Allocation Problems Using an Evolutionary Approach and Multiagent Reinforcement Learning -- 1 Introduction -- 2 Multiagent Reinforcement Learning -- 3 Related Work -- 4 Methods: General Scheme -- 5 Methods: Specific Problem -- 5.1 Instantiation to a Congestion Game -- 5.2 Traffic Networks -- 6 Results -- 6.1 Network: OW -- 6.2 Network: SF -- 6.3 Network: Braess Paradox -- 6.4 Discussion -- 7 Conclusions and Future Work -- References -- EvoENERGY. Achieving Optimized Decisions on Battery Operating Strategies in Smart Buildings -- 1 Introduction -- 2 Related Work -- 3 Scenario and Setup: Smart Residential Building -- 3.1 Building Model and Battery Energy Storage System Model -- 3.2 Building Energy Management System -- 4 Battery System Controller: Approach and Optimization -- 4.1 Non-optimized and Optimized Operating Strategies -- 4.2 Integration into the Optimization -- 4.3 Handling of Uncertainty in Predictions -- 5 Results and Discussion -- 5.1 Exemplary Optimized Day -- 5.2 Discussion of the Results -- 6 Conclusion and Outlook -- References -- Phase-Space Sampling of Energy Ensembles with CMA-ES -- 1 Introduction -- 2 Scheduling and Flexibility Modeling -- 3 Phase Space Sampling -- 4 CMA-ES for Optimized Sampling -- 5 Results -- 6 Conclusion -- References -- Many-Objective Optimization of Mission and Hybrid Electric Power System of an Unmanned Aircraft -- Abstract -- 1 Introduction -- 1.1 Evolutionary Methods -- 2 The Optimization Problem -- 2.1 Inputs of the Optimization -- 2.2 Optimization Methods and Goals -- 3 Performance Analysis -- 3.1 Results of the Simplified Problem -- 3.2 Results of the Complete Problem (Many-Objective Optimization) -- 4 Discussion of the Results -- 5 Conclusions -- References -- Evolving Controllers for Electric Vehicle Charging -- 1 Introduction -- 2 Evolution of Controllers -- 3 Experiments -- 4 Conclusions and Future Work -- References -- Network Coordinated Evolution: Modeling and Control of Distributed Systems Through On-line Genetic PID-Control Optimization Search -- 1 Introduction -- 2 Problem Description -- 3 Network Coordinated Evolution -- 3.1 On-line Genetic Search Algorithm -- 3.2 Graph Database -- 4 Implementation -- 4.1 Genetic Search Implementation -- 4.2 Testbed Realization -- 5 Results -- 6 Conclusion -- References -- EvoGAMES. Piecemeal Evolution of a First Person Shooter Level -- 1 Introduction -- 2 Background Work on Map Sketches -- 3 Methodology -- 3.1 Evolving the Ground Floor -- 3.2 Creating the Top Floor from the Ground Floor -- 3.3 Evolving both Floors -- 3.4 Post-processing to Create the Final Room -- 4 Experiments -- 4.1 Comparing Level Structures -- 4.2 Comparing Level Patterns -- 5 Discussion -- 6 Conclusion -- References -- Online-Trained Fitness Approximators for Real-World Game Balancing -- 1 Introduction -- 1.1 Motivation -- 1.2 Previous Work -- 1.3 Structure -- 2 Methodology -- 2.1 Ms Pacman -- 2.2 TORCS -- 2.3 Genetic Algorithm -- 2.4 Approximator Integration -- 2.5 Neural Network -- 2.6 C4.5 Decision Trees -- 2.7 K-Nearest Neighbours -- 2.8 Experiments -- 3 Results -- 3.1 PacMan -- 3.2 TORCS -- 4 Discussion and Conclusion -- References -- Recomposing the Pokémon Color Palette -- 1 Introduction -- 2 Related Work -- 3 Processing the Pokémon Dataset -- 3.1 The Dataset -- 3.2 Decomposing Pokémon Sprites -- 3.3 Analysis of Pokémon Sprite Metrics -- 4 Building a Classifier for Pokémon Types -- 5 Evolving the Pokémon Pallette -- 5.1 Customizing a Single Pokémon -- 5.2 Removing a Pokémon Type -- 5.3 Balancing the Number of Pokémon Per Type -- 6 Discussion -- 7 Conclusion -- References -- Mapping Chess Aesthetics onto Procedurally Generated Chess-Like Games -- 1 Introduction -- 2 Background Work -- 2.1 Procedural Content Generation -- 2.2 Simplified Boardgames -- 3 Methodology -- 3.1 Strategic Metrics -- 3.2 Visual Metrics -- 3.3 Mapping from General Games to Chess -- 3.4 Representation -- 3.5 Evolution and Its Variants -- 4 Results -- 5 Discussion -- 6 Conclusion -- References -- Evolving a TORCS Modular Fuzzy Driver Using Genetic Algorithms -- 1 Introduction -- 2 State of the Art -- 3 Experimental Setup -- 3.1 The TORCS Simulator -- 3.2 Fuzzy Controller. 4 Optimizing the Fuzzy Controllers with GA. |
Record Nr. | UNISA-996465744903316 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Applications of Evolutionary Computation : 21st International Conference, EvoApplications 2018, Parma, Italy, April 4-6, 2018, Proceedings / / edited by Kevin Sim, Paul Kaufmann |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (XXII, 917 p. 305 illus.) |
Disciplina | 005.432 |
Collana | Theoretical Computer Science and General Issues |
Soggetto topico |
Algorithms
Artificial intelligence Computer vision Pattern recognition systems Computer networks Computers, Special purpose Artificial Intelligence Computer Vision Automated Pattern Recognition Computer Communication Networks Special Purpose and Application-Based Systems |
ISBN | 3-319-77538-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Volume Editors -- Preface -- Organization -- Contents -- EvoBAFIN -- Multi-objective Cooperative Coevolutionary Algorithm with Dynamic Species-Size Strategy -- Abstract -- 1 Introduction -- 2 Multi-objective CCA with Dynamic Problem Decomposition -- 2.1 Dynamic Species-Size -- 2.2 Dynamic Process -- 2.3 Collaborator Selection Method -- 2.4 DMOCCA Main Algorithm -- 3 Formulation of CCMVPOP -- 4 Computational Experiments -- 4.1 Data -- 4.2 Parameter Setting -- 4.3 Computational Results -- 4.4 Effects of Implementing the Dynamic Species-Size Strategy -- 5 Conclusions -- References -- EvoBIO -- Task Classification Using Topological Graph Features for Functional M/EEG Brain Connectomics -- 1 Introduction -- 2 Model Selection as an Optimization Problem -- 3 Models and Methods -- 4 Experiments and Results -- 5 Conclusions and Future Research Lines -- References -- Feature Selection for Detecting Gene-Gene Interactions in Genome-Wide Association Studies -- 1 Introduction -- 2 Methods -- 2.1 Datasets -- 2.2 Quantification of Pairwise Interactions Using Information Gain -- 2.3 Feature Selection Algorithms -- 3 Results -- 3.1 Feature Selection Algorithms on the Simulated Data -- 3.2 Feature Selection Algorithms on the CRC Data -- 4 Discussion -- References -- Fitness Functions Evaluation for Segmentation of Lymphoma Histological Images Using Genetic Algorithm -- 1 Introduction -- 2 Materials and Methods -- 2.1 Images Dataset -- 2.2 Proposed Algorithm -- 2.3 Evaluation Metrics -- 3 Results and Discussion -- 4 Conclusion -- References -- Mutual Information Iterated Local Search: A Wrapper-Filter Hybrid for Feature Selection in Brain Computer Interfaces -- 1 Introduction -- 2 Background -- 2.1 Filters -- 2.2 Wrappers -- 2.3 Hybrid Approaches -- 3 Proposed Method -- 3.1 Iterated Local Search.
3.2 Minimal Redundancy Maximal Relevance-Iterated Local Search -- 4 Methodology -- 4.1 Datasets -- 4.2 Features -- 4.3 Solution Size -- 4.4 Classifiers -- 5 Results and Discussion -- 6 Conclusion -- References -- Automatic Segmentation of Neurons in 3D Samples of Human Brain Cortex -- Abstract -- 1 Introduction -- 2 Materials and Methods -- 2.1 Sample Collection and Preparation -- 2.2 Imaging: Two-Photon Fluorescence Microscopy -- 2.3 Image Stitching -- 2.4 Pattern-Level Segmentation by CNN -- 3 Results -- 4 Discussion and Conclusion -- Acknowledgements -- References -- Analysis of Relevance and Redundance on Topoisomerase 2b (TOP2B) Binding Sites: A Feature Selection Approach -- 1 Introduction -- 2 Materials and Methods -- 2.1 Data -- 2.2 Classification -- 2.3 Feature Selection -- 3 Experimental Results -- 3.1 Baseline Classification Results -- 3.2 Feature Selection -- 4 Feature Analysis -- 4.1 Baseline Classification -- 4.2 Feature Selection -- 5 Conclusions and Future Works -- References -- EvoCOMNET -- Multimodal Transportation Network Design Using Physarum Polycephalum-Inspired Multi-agent Computation Methods -- 1 Introduction -- 2 Previous Work -- 3 Research Methodology -- 3.1 Model Background -- 3.2 The Multimodal Physarum Model -- 4 Model Evaluation -- 4.1 Basic Network Performance Analysis -- 4.2 Implementation in Real-World Context -- 5 Conclusions and Future Research -- References -- Improving Multi-objective Evolutionary Influence Maximization in Social Networks -- 1 Introduction -- 2 Background and Related Work -- 2.1 Models for Influence Propagation and Problem Formulation -- 2.2 Existing Solutions for Influence Maximization -- 3 Proposed Approach -- 4 Experimental Evaluation -- 4.1 Benchmarks -- 4.2 Experimental Results -- 5 Conclusions -- References -- Social Relevance Index for Studying Communities in a Facebook Group of Patients. 1 Introduction -- 2 Related Works -- 3 The Relevance Index Approach -- 4 HyReSS: Hybrid Relevant Set Search -- 4.1 Genetic Algorithm -- 4.2 Variable Relevance-Based Local Search -- 4.3 Variable Frequency-Based Search -- 4.4 CRS Cardinality-Based Search -- 4.5 Merging -- 5 Experimental Results -- 5.1 Dataset Description -- 5.2 HyReSS Performances -- 5.3 Social Network Results -- 6 Conclusion -- References -- A Fast Metaheuristic for the Design of DVB-T2 Networks -- 1 Introduction -- 2 An Optimization Model for DVB-T2 Network Design -- 2.1 Strengthening the Formulation DVB-MILP -- 3 A Metaheuristic for DVB-T2 Network Design -- 3.1 Feasible Solution Construction -- 3.2 MILP Improvement Heuristic -- 3.3 The Complete Algorithm -- 4 Computational Tests -- 5 Conclusion and Future Work -- References -- EvoCOMPLEX -- A Genetic Algorithm for Community Detection in Attributed Graphs -- 1 Introduction -- 2 Problem Definition -- 3 @NetGA Description -- 4 Experimental Evaluation -- 4.1 Datasets -- 4.2 Algorithms in Comparison -- 4.3 Evaluation Measures -- 4.4 Results -- 5 Conclusion -- References -- Maximizing the Effect of Local Disturbance in the Dynamics of Opinion Formation -- Abstract -- 1 Introduction -- 2 Model -- 3 Genetic Algorithm -- 4 Result -- 5 Conclusion -- Acknowledgement -- References -- Accelerating the Computation of Solutions in Resource Allocation Problems Using an Evolutionary Approach and Multiagent Reinforcement Learning -- 1 Introduction -- 2 Multiagent Reinforcement Learning -- 3 Related Work -- 4 Methods: General Scheme -- 5 Methods: Specific Problem -- 5.1 Instantiation to a Congestion Game -- 5.2 Traffic Networks -- 6 Results -- 6.1 Network: OW -- 6.2 Network: SF -- 6.3 Network: Braess Paradox -- 6.4 Discussion -- 7 Conclusions and Future Work -- References -- EvoENERGY. Achieving Optimized Decisions on Battery Operating Strategies in Smart Buildings -- 1 Introduction -- 2 Related Work -- 3 Scenario and Setup: Smart Residential Building -- 3.1 Building Model and Battery Energy Storage System Model -- 3.2 Building Energy Management System -- 4 Battery System Controller: Approach and Optimization -- 4.1 Non-optimized and Optimized Operating Strategies -- 4.2 Integration into the Optimization -- 4.3 Handling of Uncertainty in Predictions -- 5 Results and Discussion -- 5.1 Exemplary Optimized Day -- 5.2 Discussion of the Results -- 6 Conclusion and Outlook -- References -- Phase-Space Sampling of Energy Ensembles with CMA-ES -- 1 Introduction -- 2 Scheduling and Flexibility Modeling -- 3 Phase Space Sampling -- 4 CMA-ES for Optimized Sampling -- 5 Results -- 6 Conclusion -- References -- Many-Objective Optimization of Mission and Hybrid Electric Power System of an Unmanned Aircraft -- Abstract -- 1 Introduction -- 1.1 Evolutionary Methods -- 2 The Optimization Problem -- 2.1 Inputs of the Optimization -- 2.2 Optimization Methods and Goals -- 3 Performance Analysis -- 3.1 Results of the Simplified Problem -- 3.2 Results of the Complete Problem (Many-Objective Optimization) -- 4 Discussion of the Results -- 5 Conclusions -- References -- Evolving Controllers for Electric Vehicle Charging -- 1 Introduction -- 2 Evolution of Controllers -- 3 Experiments -- 4 Conclusions and Future Work -- References -- Network Coordinated Evolution: Modeling and Control of Distributed Systems Through On-line Genetic PID-Control Optimization Search -- 1 Introduction -- 2 Problem Description -- 3 Network Coordinated Evolution -- 3.1 On-line Genetic Search Algorithm -- 3.2 Graph Database -- 4 Implementation -- 4.1 Genetic Search Implementation -- 4.2 Testbed Realization -- 5 Results -- 6 Conclusion -- References -- EvoGAMES. Piecemeal Evolution of a First Person Shooter Level -- 1 Introduction -- 2 Background Work on Map Sketches -- 3 Methodology -- 3.1 Evolving the Ground Floor -- 3.2 Creating the Top Floor from the Ground Floor -- 3.3 Evolving both Floors -- 3.4 Post-processing to Create the Final Room -- 4 Experiments -- 4.1 Comparing Level Structures -- 4.2 Comparing Level Patterns -- 5 Discussion -- 6 Conclusion -- References -- Online-Trained Fitness Approximators for Real-World Game Balancing -- 1 Introduction -- 1.1 Motivation -- 1.2 Previous Work -- 1.3 Structure -- 2 Methodology -- 2.1 Ms Pacman -- 2.2 TORCS -- 2.3 Genetic Algorithm -- 2.4 Approximator Integration -- 2.5 Neural Network -- 2.6 C4.5 Decision Trees -- 2.7 K-Nearest Neighbours -- 2.8 Experiments -- 3 Results -- 3.1 PacMan -- 3.2 TORCS -- 4 Discussion and Conclusion -- References -- Recomposing the Pokémon Color Palette -- 1 Introduction -- 2 Related Work -- 3 Processing the Pokémon Dataset -- 3.1 The Dataset -- 3.2 Decomposing Pokémon Sprites -- 3.3 Analysis of Pokémon Sprite Metrics -- 4 Building a Classifier for Pokémon Types -- 5 Evolving the Pokémon Pallette -- 5.1 Customizing a Single Pokémon -- 5.2 Removing a Pokémon Type -- 5.3 Balancing the Number of Pokémon Per Type -- 6 Discussion -- 7 Conclusion -- References -- Mapping Chess Aesthetics onto Procedurally Generated Chess-Like Games -- 1 Introduction -- 2 Background Work -- 2.1 Procedural Content Generation -- 2.2 Simplified Boardgames -- 3 Methodology -- 3.1 Strategic Metrics -- 3.2 Visual Metrics -- 3.3 Mapping from General Games to Chess -- 3.4 Representation -- 3.5 Evolution and Its Variants -- 4 Results -- 5 Discussion -- 6 Conclusion -- References -- Evolving a TORCS Modular Fuzzy Driver Using Genetic Algorithms -- 1 Introduction -- 2 State of the Art -- 3 Experimental Setup -- 3.1 The TORCS Simulator -- 3.2 Fuzzy Controller. 4 Optimizing the Fuzzy Controllers with GA. |
Record Nr. | UNINA-9910349457803321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|