Arithmetic Moduli of Elliptic Curves. (AM-108), Volume 108 / / Barry Mazur, Nicholas M. Katz |
Autore | Katz Nicholas M. |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (532 pages) : illustrations |
Disciplina | 516.3/5 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Curves, Elliptic
Moduli theory Geometry, Algebraic |
Soggetto non controllato |
Abelian variety
Addition Algebraic variety Algebraically closed field Ambient space Arithmetic Axiom Barry Mazur Base change Calculation Canonical map Change of base Closed immersion Coefficient Coherent sheaf Cokernel Commutative property Congruence relation Coprime integers Corollary Cusp form Cyclic group Dense set Diagram (category theory) Dimension Discrete valuation ring Disjoint union Divisor Eigenfunction Elliptic curve Empty set Factorization Field of fractions Finite field Finite group Finite morphism Free module Functor Group (mathematics) Integer Irreducible component Level structure Local ring Maximal ideal Modular curve Modular equation Modular form Moduli space Morphism of schemes Morphism Neighbourhood (mathematics) Noetherian One-parameter group Open problem Prime factor Prime number Prime power Q.E.D. Regularity theorem Representation theory Residue field Riemann hypothesis Smoothness Special case Subgroup Subring Subset Theorem Topology Two-dimensional space Zariski topology |
ISBN | 1-4008-8171-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- TABLE OF CONTENTS -- INTRODUCTION -- Chapter 1. GENERALITIES ON " A-STRUCTURES" AND " A-GENERATORS" -- Chapter 2. REVIEW OF ELLIPTIC CURVES -- Chapter 3. THE FOUR BASIC MODULI PROBLEMS FOR ELLIPTIC CURVES: SORITES -- Chapter 4. THE FORMALISM OF MODULI PROBLEMS -- Chapter 5. REGULARITY THEOREMS -- Chapter 6. CYCLICITY -- Chapter 7. QUOTIENTS BY FINITE GROUPS -- Chapter 8. COARSE MODULI SCHEMES, CUSPS, AND COMPACTIFICATION -- Chapter 9. MODULI PROBLEMS VIEWED OVER CYCLOTOMIC INTEGER RINGS -- Chapter 10. THE CALCULUS OF CUSPS AND COMPONENTS VIA THE GROUPS T[N], AND THE GLOBAL STRUCTURE OF THE BASIC MODULI PROBLEMS -- Chapter 11. INTERLUDE-EXOTIC MODULAR MORPHISMS AND ISOMORPHISMS -- Chapter 12. NEW MODULI PROBLEMS IN CHARACTERISTIC p; IGUSA CURVES -- Chapter 13. REDUCTIONS mod p OF THE BASIC MODULI PROBLEMS -- Chapter 14. APPLICATION TO THEOREMS OF GOOD REDUCTION -- NOTES ADDED IN PROOF -- REFERENCES |
Record Nr. | UNINA-9910154753303321 |
Katz Nicholas M. | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Exponential Sums and Differential Equations. (AM-124), Volume 124 / / Nicholas M. Katz |
Autore | Katz Nicholas M. |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (445 pages) : illustrations |
Disciplina | 512/.73 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Exponential sums
Differential equations |
Soggetto non controllato |
Adjoint representation
Algebraic geometry Algebraic integer Algebraically closed field Automorphism Base change Bernard Dwork Big O notation Bijection Calculation Characteristic polynomial Codimension Coefficient Cohomology Comparison theorem Complex manifold Conjugacy class Connected component (graph theory) Convolution Determinant Diagram (category theory) Differential Galois theory Differential equation Dimension (vector space) Dimension Direct sum Divisor Eigenvalues and eigenvectors Endomorphism Equation Euler characteristic Existential quantification Exponential sum Fiber bundle Field of fractions Finite field Formal power series Fourier transform Fundamental group Fundamental representation Galois extension Galois group Gauss sum Generic point Group theory Homomorphism Hypergeometric function Identity component Identity element Integer Irreducibility (mathematics) Irreducible representation Isogeny Isomorphism class L-function Laurent polynomial Lie algebra Logarithm Mathematical induction Matrix coefficient Maximal compact subgroup Maximal torus Mellin transform Monic polynomial Monodromy theorem Monodromy Monomial Natural number Normal subgroup P-adic number Permutation Polynomial Prime number Pullback Quotient group Reductive group Regular singular point Representation theory Ring homomorphism Root of unity Scientific notation Set (mathematics) Sheaf (mathematics) Special case Subcategory Subgroup Subring Subset Summation Surjective function Symmetric group Tensor product Theorem Theory Three-dimensional space (mathematics) Torsor (algebraic geometry) Trichotomy (mathematics) Unitarian trick Unitary group Variable (mathematics) |
ISBN | 1-4008-8243-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Introduction -- CHAPTER 1. Results from Representation Theory -- CHAPTER 2. D.E.'s and D-modules -- CHAPTER 3. The Generalized Hypergeometric Equation -- CHAPTER 4. Detailed Analysis of the Exceptional Cases -- CHAPTER 5. Convolution of D-modules -- CHAPTER 6. Fourier Transforms of Kummer Pullbacks of Hypergeometrics -- CHAPTER 7. The ℓ- adic Theory -- CHAPTER 8. ℓ-adic Hypergeometrics -- CHAPTER 9. G2 Examples, Fourier Transforms, and Hypergeometrics -- CHAPTER 10. ℓ -adic Exceptional Cases -- CHAPTER 11. Reductive Tannakian Categories -- CHAPTER 12. Fourier Universality -- CHAPTER 13. Stratifications and Convolution -- CHAPTER 14. The Fundamental Comparison Theorems -- References |
Record Nr. | UNINA-9910154744703321 |
Katz Nicholas M. | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Gauss Sums, Kloosterman Sums, and Monodromy Groups. (AM-116), Volume 116 / / Nicholas M. Katz |
Autore | Katz Nicholas M. |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (257 pages) : illustrations |
Disciplina | 512/.7 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Gaussian sums
Kloosterman sums Homology theory Monodromy groups |
Soggetto non controllato |
Abelian category
Absolute Galois group Absolute value Additive group Adjoint representation Affine variety Algebraic group Automorphic form Automorphism Big O notation Cartan subalgebra Characteristic polynomial Classification theorem Coefficient Cohomology Cokernel Combination Commutator Compactification (mathematics) Complex Lie group Complex number Conjugacy class Continuous function Convolution theorem Convolution Determinant Diagonal matrix Dimension (vector space) Direct sum Dual basis Eigenvalues and eigenvectors Empty set Endomorphism Equidistribution theorem Estimation Exactness Existential quantification Exponential sum Exterior algebra Faithful representation Finite field Finite group Four-dimensional space Frobenius endomorphism Fundamental group Fundamental representation Galois group Gauss sum Homomorphism Integer Irreducibility (mathematics) Isomorphism class Kloosterman sum L-function Leray spectral sequence Lie algebra Lie theory Maximal compact subgroup Method of moments (statistics) Monodromy theorem Monodromy Morphism Multiplicative group Natural number Nilpotent Open problem P-group Pairing Parameter space Parameter Partially ordered set Perfect field Point at infinity Polynomial ring Prime number Quotient group Representation ring Representation theory Residue field Riemann hypothesis Root of unity Sheaf (mathematics) Simple Lie group Skew-symmetric matrix Smooth morphism Special case Spin representation Subgroup Support (mathematics) Symmetric matrix Symplectic group Symplectic vector space Tensor product Theorem Trace (linear algebra) Trivial representation Variable (mathematics) Weil conjectures Weyl character formula Zariski topology |
ISBN | 1-4008-8212-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Introduction -- CHAPTER 1. Breaks and Swan Conductors -- CHAPTER 2. Curves and Their Cohomology -- CHAPTER 3. Equidistribution in Equal Characteristic -- CHAPTER 4. Gauss Sums and Kloosterman Sums: Kloosterman Sheaves -- CHAPTER 5. Convolution of Sheaves on Gm -- CHAPTER 6. Local Convolution -- CHAPTER 7. Local Monodromy at Zero of a Convolution: Detailed Study -- CHAPTER 8. Complements on Convolution -- CHAPTER 9. Equidistribution in (S1)r of r-tuples of Angles of Gauss Sums -- CHAPTER 10. Local Monodromy at ∞ of Kloosterman Sheaves -- CHAPTER 11. Global Monodromy of Kloosterman Sheaves -- CHAPTER 12. Integral Monodromy of Kloosterman Sheaves (d'après O. Gabber) -- CHAPTER 13. Equidistribution of "Angles" of Kloosterman Sums -- References |
Record Nr. | UNINA-9910154750003321 |
Katz Nicholas M. | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Rigid Local Systems. (AM-139), Volume 139 / / Nicholas M. Katz |
Autore | Katz Nicholas M. |
Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
Descrizione fisica | 1 online resource (233 pages) |
Disciplina | 515/.35 |
Collana | Annals of Mathematics Studies |
Soggetto topico |
Differential equations - Numerical solutions
Hypergeometric functions Sheaf theory |
Soggetto non controllato |
Additive group
Alexander Grothendieck Algebraic closure Algebraic differential equation Algebraically closed field Algorithm Analytic continuation Automorphism Axiom of choice Bernhard Riemann Big O notation Calculation Carlos Simpson Coefficient Cohomology Commutator Compactification (mathematics) Comparison theorem Complex analytic space Complex conjugate Complex manifold Conjecture Conjugacy class Convolution Corollary Cube root Cusp form De Rham cohomology Differential equation Dimension Dimensional analysis Discrete valuation ring Disjoint union Divisor Duality (mathematics) Eigenfunction Eigenvalues and eigenvectors Elliptic curve Equation Equivalence of categories Exact sequence Existential quantification Finite field Finite set Fourier transform Functor Fundamental group Generic point Ground field Hodge structure Hypergeometric function Integer Invertible matrix Isomorphism class Jordan normal form Level of measurement Linear differential equation Local system Mathematical induction Mathematics Matrix (mathematics) Monodromy Monomial Morphism Natural filtration Parameter Parity (mathematics) Perfect field Perverse sheaf Polynomial Prime number Projective representation Projective space Pullback (category theory) Pullback Rational function Regular singular point Relative dimension Residue field Ring of integers Root of unity Sequence Sesquilinear form Set (mathematics) Sheaf (mathematics) Six operations Special case Subgroup Subobject Subring Suggestion Summation Tensor product Theorem Theory Topology Triangular matrix Trivial representation Vector space Zariski topology |
ISBN | 1-4008-8259-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Contents -- Introduction -- CHAPTER 1. First results on rigid local systems -- CHAPTER 2. The theory of middle convolution -- CHAPTER 3. Fourier Transform and rigidity -- CHAPTER 4. Middle convolution: dependence on parameters -- CHAPTER 5. Structure of rigid local systems -- CHAPTER 6. Existence algorithms for rigids -- CHAPTER 7. Diophantine aspects of rigidity -- CHAPTER 8. Motivic description of rigids -- CHAPTER 9. Grothendieck's p-curvature conjecture for rigids -- References |
Record Nr. | UNINA-9910154746203321 |
Katz Nicholas M. | ||
Princeton, NJ : , : Princeton University Press, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|