top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Microstructural Characterization of Materials [[electronic resource]]
Microstructural Characterization of Materials [[electronic resource]]
Autore Brandon David
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, : Wiley, 2008
Descrizione fisica 1 online resource (554 p.)
Disciplina 620.1/1299
Altri autori (Persone) KaplanWayne D
BrandonD. G
Collana Quantitative software engineering series Microstructural characterization of materials
Soggetto topico Electronic books. -- local
Materials -- Microscopy
Microstructure
Materials - Microscopy
Materials Science
Chemical & Materials Engineering
Engineering & Applied Sciences
Soggetto genere / forma Electronic books.
ISBN 1-282-34294-0
9786612342943
0-470-72712-8
0-470-72713-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Microstructural Characterization of Materials; Contents; Preface to the Second Edition; Preface to the First Edition; 1 The Concept of Microstructure; 1.1 Microstructural Features; 1.1.1 Structure-Property Relationships; 1.1.2 Microstructural Scale; 1.1.3 Microstructural Parameters; 1.2 Crystallography and Crystal Structure; 1.2.1 Interatomic Bonding in Solids; 1.2.2 Crystalline and Amorphous Phases; 1.2.3 The Crystal Lattice; Summary; Bibliography; Worked Examples; Problems; 2 Diffraction Analysis of Crystal Structure; 2.1 Scattering of Radiation by Crystals
2.1.1 The Laue Equations and Bragg's Law2.1.2 Allowed and Forbidden Reflections; 2.2 Reciprocal Space; 2.2.1 The Limiting Sphere Construction; 2.2.2 Vector Representation of Bragg's Law; 2.2.3 The Reciprocal Lattice; 2.3 X-Ray Diffraction Methods; 2.3.1 The X-Ray Diffractometer; 2.3.2 Powder Diffraction-Particles and Polycrystals; 2.3.3 Single Crystal Laue Diffraction; 2.3.4 Rotating Single Crystal Methods; 2.4 Diffraction Analysis; 2.4.1 Atomic Scattering Factors; 2.4.2 Scattering by the Unit Cell; 2.4.3 The Structure Factor in the Complex Plane
2.4.4 Interpretation of Diffracted Intensities2.4.5 Errors and Assumptions; 2.5 Electron Diffraction; 2.5.1 Wave Properties of Electrons; 2.5.2 Ring Patterns, Spot Patterns and Laue Zones; 2.5.3 Kikuchi Patterns and Their Interpretation; Summary; Bibliography; Worked Examples; Problems; 3 Optical Microscopy; 3.1 Geometrical Optics; 3.1.1 Optical Image Formation; 3.1.2 Resolution in the Optical Microscope; 3.1.3 Depth of Field and Depth of Focus; 3.2 Construction of the Microscope; 3.2.1 Light Sources and Condenser Systems; 3.2.2 The Specimen Stage; 3.2.3 Selection of Objective Lenses
3.2.4 Image Observation and Recording3.3 Specimen Preparation; 3.3.1 Sampling and Sectioning; 3.3.2 Mounting and Grinding; 3.3.3 Polishing and Etching Methods; 3.4 Image Contrast; 3.4.1 Reflection and Absorption of Light; 3.4.2 Bright-Field and Dark-Field Image Contrast; 3.4.3 Confocal Microscopy; 3.4.4 Interference Contrast and Interference Microscopy; 3.4.5 Optical Anisotropy and Polarized Light; 3.4.6 Phase Contrast Microscopy; 3.5 Working with Digital Images; 3.5.1 Data Collection and The Optical System; 3.5.2 Data Processing and Analysis; 3.5.3 Data Storage and Presentation
3.5.4 Dynamic Range and Digital Storage3.6 Resolution, Contrast and Image Interpretation; Summary; Bibliography; Worked Examples; Problems; 4 Transmission Electron Microscopy; 4.1 Basic Principles; 4.1.1 Wave Properties of Electrons; 4.1.2 Resolution Limitations and Lens Aberrations; 4.1.3 Comparative Performance of Transmission and Scanning Electron Microscopy; 4.2 Specimen Preparation; 4.2.1 Mechanical Thinning; 4.2.2 Electrochemical Thinning; 4.2.3 Ion Milling; 4.2.4 Sputter Coating and Carbon Coating; 4.2.5 Replica Methods; 4.3 The Origin of Contrast; 4.3.1 Mass-Thickness Contrast
4.3.2 Diffraction Contrast and Crystal Lattice Defects
Record Nr. UNINA-9910146741103321
Brandon David  
Hoboken, : Wiley, 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Microstructural Characterization of Materials [[electronic resource]]
Microstructural Characterization of Materials [[electronic resource]]
Autore Brandon David
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, : Wiley, 2008
Descrizione fisica 1 online resource (554 p.)
Disciplina 620.1/1299
Altri autori (Persone) KaplanWayne D
BrandonD. G
Collana Quantitative software engineering series Microstructural characterization of materials
Soggetto topico Electronic books. -- local
Materials -- Microscopy
Microstructure
Materials - Microscopy
Materials Science
Chemical & Materials Engineering
Engineering & Applied Sciences
ISBN 1-282-34294-0
9786612342943
0-470-72712-8
0-470-72713-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Microstructural Characterization of Materials; Contents; Preface to the Second Edition; Preface to the First Edition; 1 The Concept of Microstructure; 1.1 Microstructural Features; 1.1.1 Structure-Property Relationships; 1.1.2 Microstructural Scale; 1.1.3 Microstructural Parameters; 1.2 Crystallography and Crystal Structure; 1.2.1 Interatomic Bonding in Solids; 1.2.2 Crystalline and Amorphous Phases; 1.2.3 The Crystal Lattice; Summary; Bibliography; Worked Examples; Problems; 2 Diffraction Analysis of Crystal Structure; 2.1 Scattering of Radiation by Crystals
2.1.1 The Laue Equations and Bragg's Law2.1.2 Allowed and Forbidden Reflections; 2.2 Reciprocal Space; 2.2.1 The Limiting Sphere Construction; 2.2.2 Vector Representation of Bragg's Law; 2.2.3 The Reciprocal Lattice; 2.3 X-Ray Diffraction Methods; 2.3.1 The X-Ray Diffractometer; 2.3.2 Powder Diffraction-Particles and Polycrystals; 2.3.3 Single Crystal Laue Diffraction; 2.3.4 Rotating Single Crystal Methods; 2.4 Diffraction Analysis; 2.4.1 Atomic Scattering Factors; 2.4.2 Scattering by the Unit Cell; 2.4.3 The Structure Factor in the Complex Plane
2.4.4 Interpretation of Diffracted Intensities2.4.5 Errors and Assumptions; 2.5 Electron Diffraction; 2.5.1 Wave Properties of Electrons; 2.5.2 Ring Patterns, Spot Patterns and Laue Zones; 2.5.3 Kikuchi Patterns and Their Interpretation; Summary; Bibliography; Worked Examples; Problems; 3 Optical Microscopy; 3.1 Geometrical Optics; 3.1.1 Optical Image Formation; 3.1.2 Resolution in the Optical Microscope; 3.1.3 Depth of Field and Depth of Focus; 3.2 Construction of the Microscope; 3.2.1 Light Sources and Condenser Systems; 3.2.2 The Specimen Stage; 3.2.3 Selection of Objective Lenses
3.2.4 Image Observation and Recording3.3 Specimen Preparation; 3.3.1 Sampling and Sectioning; 3.3.2 Mounting and Grinding; 3.3.3 Polishing and Etching Methods; 3.4 Image Contrast; 3.4.1 Reflection and Absorption of Light; 3.4.2 Bright-Field and Dark-Field Image Contrast; 3.4.3 Confocal Microscopy; 3.4.4 Interference Contrast and Interference Microscopy; 3.4.5 Optical Anisotropy and Polarized Light; 3.4.6 Phase Contrast Microscopy; 3.5 Working with Digital Images; 3.5.1 Data Collection and The Optical System; 3.5.2 Data Processing and Analysis; 3.5.3 Data Storage and Presentation
3.5.4 Dynamic Range and Digital Storage3.6 Resolution, Contrast and Image Interpretation; Summary; Bibliography; Worked Examples; Problems; 4 Transmission Electron Microscopy; 4.1 Basic Principles; 4.1.1 Wave Properties of Electrons; 4.1.2 Resolution Limitations and Lens Aberrations; 4.1.3 Comparative Performance of Transmission and Scanning Electron Microscopy; 4.2 Specimen Preparation; 4.2.1 Mechanical Thinning; 4.2.2 Electrochemical Thinning; 4.2.3 Ion Milling; 4.2.4 Sputter Coating and Carbon Coating; 4.2.5 Replica Methods; 4.3 The Origin of Contrast; 4.3.1 Mass-Thickness Contrast
4.3.2 Diffraction Contrast and Crystal Lattice Defects
Record Nr. UNINA-9910829923603321
Brandon David  
Hoboken, : Wiley, 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Microstructural Characterization of Materials [[electronic resource]]
Microstructural Characterization of Materials [[electronic resource]]
Autore Brandon David
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, : Wiley, 2008
Descrizione fisica 1 online resource (554 p.)
Disciplina 620.1/1299
Altri autori (Persone) KaplanWayne D
BrandonD. G
Collana Quantitative software engineering series Microstructural characterization of materials
Soggetto topico Electronic books. -- local
Materials -- Microscopy
Microstructure
Materials - Microscopy
Materials Science
Chemical & Materials Engineering
Engineering & Applied Sciences
ISBN 1-282-34294-0
9786612342943
0-470-72712-8
0-470-72713-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Microstructural Characterization of Materials; Contents; Preface to the Second Edition; Preface to the First Edition; 1 The Concept of Microstructure; 1.1 Microstructural Features; 1.1.1 Structure-Property Relationships; 1.1.2 Microstructural Scale; 1.1.3 Microstructural Parameters; 1.2 Crystallography and Crystal Structure; 1.2.1 Interatomic Bonding in Solids; 1.2.2 Crystalline and Amorphous Phases; 1.2.3 The Crystal Lattice; Summary; Bibliography; Worked Examples; Problems; 2 Diffraction Analysis of Crystal Structure; 2.1 Scattering of Radiation by Crystals
2.1.1 The Laue Equations and Bragg's Law2.1.2 Allowed and Forbidden Reflections; 2.2 Reciprocal Space; 2.2.1 The Limiting Sphere Construction; 2.2.2 Vector Representation of Bragg's Law; 2.2.3 The Reciprocal Lattice; 2.3 X-Ray Diffraction Methods; 2.3.1 The X-Ray Diffractometer; 2.3.2 Powder Diffraction-Particles and Polycrystals; 2.3.3 Single Crystal Laue Diffraction; 2.3.4 Rotating Single Crystal Methods; 2.4 Diffraction Analysis; 2.4.1 Atomic Scattering Factors; 2.4.2 Scattering by the Unit Cell; 2.4.3 The Structure Factor in the Complex Plane
2.4.4 Interpretation of Diffracted Intensities2.4.5 Errors and Assumptions; 2.5 Electron Diffraction; 2.5.1 Wave Properties of Electrons; 2.5.2 Ring Patterns, Spot Patterns and Laue Zones; 2.5.3 Kikuchi Patterns and Their Interpretation; Summary; Bibliography; Worked Examples; Problems; 3 Optical Microscopy; 3.1 Geometrical Optics; 3.1.1 Optical Image Formation; 3.1.2 Resolution in the Optical Microscope; 3.1.3 Depth of Field and Depth of Focus; 3.2 Construction of the Microscope; 3.2.1 Light Sources and Condenser Systems; 3.2.2 The Specimen Stage; 3.2.3 Selection of Objective Lenses
3.2.4 Image Observation and Recording3.3 Specimen Preparation; 3.3.1 Sampling and Sectioning; 3.3.2 Mounting and Grinding; 3.3.3 Polishing and Etching Methods; 3.4 Image Contrast; 3.4.1 Reflection and Absorption of Light; 3.4.2 Bright-Field and Dark-Field Image Contrast; 3.4.3 Confocal Microscopy; 3.4.4 Interference Contrast and Interference Microscopy; 3.4.5 Optical Anisotropy and Polarized Light; 3.4.6 Phase Contrast Microscopy; 3.5 Working with Digital Images; 3.5.1 Data Collection and The Optical System; 3.5.2 Data Processing and Analysis; 3.5.3 Data Storage and Presentation
3.5.4 Dynamic Range and Digital Storage3.6 Resolution, Contrast and Image Interpretation; Summary; Bibliography; Worked Examples; Problems; 4 Transmission Electron Microscopy; 4.1 Basic Principles; 4.1.1 Wave Properties of Electrons; 4.1.2 Resolution Limitations and Lens Aberrations; 4.1.3 Comparative Performance of Transmission and Scanning Electron Microscopy; 4.2 Specimen Preparation; 4.2.1 Mechanical Thinning; 4.2.2 Electrochemical Thinning; 4.2.3 Ion Milling; 4.2.4 Sputter Coating and Carbon Coating; 4.2.5 Replica Methods; 4.3 The Origin of Contrast; 4.3.1 Mass-Thickness Contrast
4.3.2 Diffraction Contrast and Crystal Lattice Defects
Record Nr. UNINA-9910876507903321
Brandon David  
Hoboken, : Wiley, 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui