Bibliometric Analyses in Data-Driven Decision-Making
| Bibliometric Analyses in Data-Driven Decision-Making |
| Autore | Chatterjee Prasenjit |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| Descrizione fisica | 1 online resource (520 pages) |
| Disciplina | 020.72/7 |
| Altri autori (Persone) |
SahaAbhijit
KadrySeifedine DemirGulay |
| Collana | Sustainable Computing and Optimization Series |
| Soggetto topico |
Bibliometrics - Methodology
Bibliometrics |
| ISBN |
1-394-30256-8
1-394-30258-4 1-394-30254-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface xxiii -- Acknowledgements xxix -- Part 1: Introduction to Bibliometric Analysis and Methodologies 1 -- 1 Introduction to Bibliometric Analysis and Methodologies 3 Gülay Demir, Prasenjit Chatterjee, Abhijit Saha and Seifedine Kadry -- 1.1 Introduction 4 -- 1.1.1 Stages of Bibliometric Analysis 5 -- 1.1.1.1 Preparation Phase Before Bibliometric Analysis 6 -- 1.1.1.2 Application Phase of Bibliometric Analysis 14 -- 1.2 Historical Development of Bibliometrics 21 -- 1.3 Key Bibliometric Indicators 24 -- 1.4 Bibliometric Data Sources 26 -- 1.5 Methodologies in Bibliometric Analysis 29 -- 1.6 Applications of Bibliometric Analysis 31 -- 1.7 Challenges and Limitations 33 -- 1.8 Future Directions in Bibliometrics 35 -- 1.9 Conclusions 38 -- References 39 -- Part 2: Bibliometric Analysis in Logistics and Supply Chain 45 -- 2 Multi-Criteria Decision-Making in Logistics and Supply Chain Management: A Bibliometric Analysis 47 Murat Kemal Keleş and Askin Ozdagoglu -- 2.1 Introduction 48 -- 2.2 Literature Review 51 -- 2.3 Materials and Methods 52 -- 2.4 Bibliometric Analysis Results of the Logistics/Supply Chain and MCDM 53 -- 2.4.1 Performance Analysis 53 -- 2.4.1.1 The General Overview of the Database 53 -- 2.4.1.2 The Annual Publication and Citation Status 54 -- 2.4.1.3 The Publication and Citation Status of Journals 55 -- 2.4.1.4 The Most Relevant Affiliations 55 -- 2.4.1.5 Authors’ Status 57 -- 2.4.1.6 The Most Productive Countries 57 -- 2.4.1.7 Most Cited Document 59 -- 2.4.2 Scientific Mapping Analysis 60 -- 2.4.2.1 Thematic Map 60 -- 2.4.2.2 Trend Topics 61 -- 2.4.2.3 Keyword Analysis 62 -- 2.5 Discussion 64 -- 2.6 Conclusions 66 -- References 67 -- 3 Digital Supply Chain: A Bibliometric Analysis 71 Rajeev Ranjan, Sonu Rajak, Prasenjit Chatterjee, Gulay Demir and Ernesto DR Santibanez Gonzalez -- 3.1 Introduction 72 -- 3.2 Bibliometric Analysis 74 -- 3.2.1 Research Gaps and Research Questions 75 -- 3.3 Materials and Methods 76 -- 3.4 Bibliometric Analysis of DSC 79 -- 3.4.1 Performance Analysis 79 -- 3.4.1.1 Overall Review of the Database 79 -- 3.4.1.2 A Rise in Annual Publications 80 -- 3.4.1.3 Average Annual Citations 81 -- 3.4.1.4 Sankey Diagram 81 -- 3.4.1.5 Most Cited and Most Published Journals 83 -- 3.4.1.6 The Most Important Affiliations 83 -- 3.4.1.7 Frequently Referenced Authors 84 -- 3.4.1.8 The Most Productive Countries 84 -- 3.4.1.9 Most Cited Document 86 -- 3.4.2 Analysis of Science Mapping 88 -- 3.4.2.1 Thematic Map 88 -- 3.4.2.2 Trend Topics 89 -- 3.4.2.3 Word Cloud 90 -- 3.4.2.4 Collaborative Network of Co-Words in Publications on DSC 91 -- 3.4.2.5 Conceptual Structure Map 92 -- 3.5 Discussions 92 -- 3.6 Conclusions 94 -- References 95 -- 4 Agile Supply Chain Dynamics: A Bibliometric Analysis with a Technology-Barrier-Performance Framework 99 Vikrant Sharma and Prasenjit Chatterjee -- 4.1 Introduction 100 -- 4.2 Literature Review 101 -- 4.3 Methodology 103 -- 4.4 Results 104 -- 4.4.1 Descriptive Analysis 104 -- 4.4.2 Sources 106 -- 4.4.3 Authors 108 -- 4.4.4 Main Research Country 110 -- 4.4.5 Relationship 112 -- 4.5 Mapping Results with VOSviewer Software 112 -- 4.6 Conceptual Structure and Evolution of the Field 115 -- 4.7 Discussion 122 -- 4.7.1 Principal Findings 122 -- 4.7.2 Technology, Enablers, Barriers, and Performance Indicators Framework 124 -- 4.7.3 Future Direction for Agile Supply Chain 127 -- 4.7.4 Limitation of Study 128 -- 4.8 Conclusions 128 -- References 129 -- Part 3: Multi-Criteria Decision‐Making (MCDM) and Bibliometric Analysis 137 -- 5 Multi-Criteria Decision-Making Methods for Robot Selection: A Bibliometric Analysis of Research Trends 139 Rajeev Ranjan, Sonu Rajak and Prasenjit Chatterjee -- 5.1 Introduction 140 -- 5.2 Bibliometric Analysis 142 -- 5.3 Materials and Methods 143 -- 5.4 Results 146 -- 5.4.1 Performance Analysis 146 -- 5.4.1.1 Database Overview 147 -- 5.4.1.2 Annual Increase in Publications 147 -- 5.4.1.3 Status of Average Annual Citations 148 -- 5.4.1.4 Sankey Diagram 149 -- 5.4.1.5 Most Cited Journals 149 -- 5.4.1.6 The Most Relevant Affiliations 151 -- 5.4.1.7 The Most Cited Authors 151 -- 5.4.1.8 The Most Productive Nations 152 -- 5.4.1.9 Most Cited Document 155 -- 5.4.2 Science Mapping Analysis 155 -- 5.4.2.1 Co-Occurrence Keywords Analysis 155 -- 5.4.2.2 Thematic Analysis 158 -- 5.4.2.3 Trend Topics 159 -- 5.4.2.4 Scientific Landscape 160 -- 5.4.2.5 Timeline Analysis 161 -- 5.4.2.6 Citation Burst Analysis 163 -- 5.5 Discussion 163 -- 5.6 Conclusions, Managerial Implication, and Future Research Directions 165 -- References 166 -- 6 Bibliometrics Analysis on Economics and MCDM 169 Yüksel Aydın -- 6.1 Introduction 170 -- 6.2 Literature Review 171 -- 6.3 Research Methodology 174 -- 6.4 Bibliometric Analysis Results on Economics and MCDM 174 -- 6.4.1 Performance Analysis 174 -- 6.4.1.1 Main Information 174 -- 6.4.1.2 Annual Status of Publications 175 -- 6.4.1.3 Average Annual Citations 176 -- 6.4.1.4 Magazines with the Most Publications 176 -- 6.4.1.5 Most Important Universities 177 -- 6.4.1.6 Most Important Authors 178 -- 6.4.1.7 Most Productive Countries 179 -- 6.4.1.8 Most Cited Article 180 -- 6.4.2 Scientific Mapping Analysis 181 -- 6.4.2.1 Thematic Map 181 -- 6.4.2.2 Trend Topics 182 -- 6.4.2.3 Keyword Analysis 183 -- 6.5 Discussion 185 -- 6.6 Conclusion 186 -- References 187 -- 7 Material Selection by Multi-Criteria Decision-Making: A Bibliometric Analysis 191 Rajeev Ranjan, Sonu Rajak and Prasenjit Chatterjee -- 7.1 Introduction 192 -- 7.2 A Brief Background of Multi-Criteria Decision-Making (mcdm) 192 -- 7.2.1 Bibliometric Analysis 196 -- 7.2.2 Research Gaps and Research Questions 197 -- 7.3 Materials and Methods 198 -- 7.4 Material Selection by MCDM Method’s Bibliometric Analysis Findings 199 -- 7.4.1 Performance Analysis 199 -- 7.4.1.1 Overall Review of the Database 200 -- 7.4.1.2 An Increase in Publications Per Year 201 -- 7.4.1.3 Average Annual Citations 201 -- 7.4.1.4 Sankey Diagram 203 -- 7.4.1.5 Most Cited and Most Published Journals 203 -- 7.4.1.6 The Most Important Affiliations 204 -- 7.4.1.7 Frequently Referenced Authors 205 -- 7.4.1.8 The Most Productive Countries 205 -- 7.4.1.9 Most Cited Document 208 -- 7.4.2 Analysis of Science Mapping 208 -- 7.4.2.1 Thematic Map 209 -- 7.4.2.2 Trend Topics 210 -- 7.4.2.3 Keyword Co-Occurrence Analysis 212 -- 7.4.2.4 Scientific Landscape 213 -- 7.4.2.5 Timeline Analysis 214 -- 7.4.2.6 Citation Burst Analysis 216 -- 7.5 Discussions 216 -- 7.6 Conclusions, Managerial Implication, and Future Research Directions 218 -- References 220 -- 8 Evaluation Based on Distance from Average Solution (EDAS) Method: A Bibliometric Analysis 223 Rajeev Ranjan, Sonu Rajak, Prasenjit Chatterjee and Seifedine Kadry -- 8.1 Introduction 224 -- 8.2 EDAS Method 226 -- 8.2.1 Fundamentals of EDAS Method 226 -- 8.2.2 Bibliometric Analysis 229 -- 8.2.3 Research Gaps and Research Questions 230 -- 8.3 Materials and Methods 232 -- 8.4 Results of the EDAS Method Bibliometric Analysis 234 -- 8.4.1 Performance Analysis 234 -- 8.4.1.1 Overall Review of the Database 234 -- 8.4.1.2 Annual Publication Increase 235 -- 8.4.1.3 Average Annual Citations 235 -- 8.4.1.4 Sankey Diagram 237 -- 8.4.1.5 Most Cited and Most Published Journals 237 -- 8.4.1.6 The Affiliations that Matter Most 238 -- 8.4.1.7 Frequently Cited Authors 238 -- 8.4.1.8 The Most Productive Countries 239 -- 8.4.1.9 Most Cited Document 242 -- 8.4.2 Analysis of Science Mapping 243 -- 8.4.2.1 Thematic Map 243 -- 8.4.2.2 Trend Topics 243 -- 8.4.2.3 Keyword Co-Occurrence Analysis 245 -- 8.4.2.4 Scientific Landscape 247 -- 8.4.2.5 Timeline Analysis 248 -- 8.4.2.6 Citation Burst Analysis 249 -- 8.5 Discussions 250 -- 8.6 Conclusions 251 -- References 252 -- 9 Evolution of m-Polar Fuzzy Set as a Decision-Making Tool: A Bibliometric Review 257 Madan Jagtap and Prasad Karande -- 9.1 Introduction 258 -- 9.1.1 Paper Organization 259 -- 9.1.2 Research Methodology and Contributions of the Work 259 -- 9.2 Literature Review 261 -- 9.2.1 Different Types of Fuzzy Sets 261 -- 9.3 Fuzzy Sets in Decision-Making 262 -- 9.4 m-Polar Fuzzy Sets in Decision-Making 263 -- 9.5 Comparison of m-Polar Fuzzy Set and Ordinary Fuzzy Sets in Decision-Making 265 -- 9.6 Analysis of m-Polar FSs 265 -- 9.6.1 Analysis Based on m-Polar FS Publications 265 -- 9.6.2 Analysis Based on Journals 267 -- 9.6.3 Analysis Based on Authors’ Contributions 282 -- 9.6.4 Analysis Based on Application of m-Polar Fuzzy Logic 284 -- 9.6.5 Bibliometric Analysis for the m-Polar Fuzzy Set 286 -- 9.6.5.1 Co-Author and Author Mapping for m-Polar Fuzzy Set 286 -- 9.6.5.2 Bibliographic Coupling of Universities for the m-Polar Fuzzy Set 287 -- 9.6.5.3 Bibliographic Coupling Countries for the m-Polar Fuzzy Set 287 -- 9.6.5.4 Citation Documents Analysis for m-Polar Fuzzy Sets 288 -- 9.6.5.5 Co-Occurrences of Author’s Keywords Analysis for m-Polar Fuzzy Sets 289 -- 9.6.5.6 Co-Authorship Organizations Analysis for the m-Polar Fuzzy Sets 290 -- 9.7 Conclusion 290 -- ... |
| Record Nr. | UNINA-9911019109403321 |
Chatterjee Prasenjit
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Big data : concepts, technology and architecture / / Balamurugan Balusamy [and three others]
| Big data : concepts, technology and architecture / / Balamurugan Balusamy [and three others] |
| Autore | Balusamy Balamurugan |
| Pubbl/distr/stampa | Hoboken, NJ : , : Wiley, , ℗2021 |
| Descrizione fisica | 1 online resource (xii, 356 pages) : illustrations |
| Disciplina | 005.7 |
| Soggetto topico | Big data |
| ISBN |
1-5231-5579-5
1-119-70187-2 1-119-70185-6 1-119-70186-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910677497203321 |
Balusamy Balamurugan
|
||
| Hoboken, NJ : , : Wiley, , ℗2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Blockchain in the Industrial Internet of Things
| Blockchain in the Industrial Internet of Things |
| Autore | Ramasamy Lakshmana Kumar |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Bristol : , : Institute of Physics Publishing, , 2022 |
| Descrizione fisica | 1 online resource (142 pages) |
| Altri autori (Persone) | KadrySeifedine |
| Collana | IOP Ebooks Series |
| Soggetto topico |
Smart contracts
Heterogeneous distributed computing systems |
| ISBN |
9780750342070
0750342072 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | PRELIMS.pdf -- Preface -- Acknowledgements -- Author biographies -- Lakshmana Kumar Ramasamy -- Seifedine Kadry -- CH001.pdf -- Chapter 1 Internet of things (IoT) -- 1.1 IoT overview -- 1.1.1 IoT essential characteristics -- 1.1.2 IoT benefits -- 1.1.3 IoT drawbacks -- 1.2 IoT common uses -- 1.3 IoT—security -- 1.3.1 Trust for IoT -- 1.3.2 IoT privacy -- 1.4 Functional view of IoT -- 1.5 Application domains -- 1.5.1 Smart industry -- 1.5.2 Smart mobility and transport -- 1.5.3 Smart buildings -- 1.5.4 Smart energy -- 1.5.5 Smart production -- 1.5.6 Smart environment monitoring -- 1.5.7 Smart living -- 1.5.8 Smart health -- 1.5.9 Smart water monitoring and smart food -- 1.5.10 Smart city -- 1.6 Summary -- References |
| Record Nr. | UNINA-9911009228703321 |
Ramasamy Lakshmana Kumar
|
||
| Bristol : , : Institute of Physics Publishing, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Blockchain Technology in Corporate Governance : Transforming Business and Industries
| Blockchain Technology in Corporate Governance : Transforming Business and Industries |
| Autore | Sood Kiran |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2022 |
| Descrizione fisica | 1 online resource (443 pages) |
| Altri autori (Persone) |
DhanarajRajesh Kumar
BalusamyBalamurugan KadrySeifedine |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-119-86524-7
1-119-86523-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- Acknowledgment -- Chapter 1 Role of Blockchain Technology in the Modern Era -- 1.1 Introduction -- 1.2 What is Blockchain Technology? -- 1.3 Blockchain Technology in Healthcare 4.0 -- 1.3.1 Area of Blockchain Technology-Based Healthcare 4.0 -- 1.3.2 Smart Blockchain Healthcare 4.0 -- 1.4 Energy Sector -- 1.5 Applications of Blockchain in the Energy Sector -- 1.5.1 Decentralized Storage and Control in Power Grid -- 1.5.2 Electricity Trading Law -- 1.5.3 Electric Vehicles -- 1.5.4 Decrease the Global Carbon Emission -- 1.6 Blockchain-Based Financial Sector -- 1.6.1 Legal Policies of the Financial Sector -- 1.6.2 Credit Risk -- 1.6.3 KYC and Product Personalization -- 1.6.4 Insurance Monetary Management -- 1.6.5 Collaborative Techniques in Financial Services Chain -- 1.7 Bitcoins and Blockchain Sustainability Issues -- 1.8 Conclusion -- References -- Part 1: Blockchain: Opportunities for Healthcare 4.0 -- Chapter 2 BTCG4: Blockchain Technology in Electronic Healthcare Systems -- 2.1 Introduction -- 2.1.1 Healthcare Industry -- 2.1.2 Requirement of Electronic Healthcare Industry -- 2.1.2.1 System Security -- 2.1.2.2 Interoperability -- 2.1.2.3 Sharing of Information -- 2.1.2.4 Mobility -- 2.1.2.5 Mobile Health -- 2.1.2.6 Wireless -- 2.1.2.7 Internet of Things -- 2.2 Overview of Blockchain -- 2.2.1 Distinct Characteristics of the Use of Blockchain in the Electronic Healthcare Industry -- 2.2.1.1 Decentralization of Storage -- 2.2.1.2 Authentication -- 2.2.1.3 Immutability -- 2.2.1.4 Improvement in Security -- 2.2.1.5 Efficiency -- 2.2.1.6 Distributed Ledger -- 2.3 Blockchain Applications -- 2.3.1.1 Smart Contracts -- 2.3.1.2 Spotting and Preventing Fraudulent Activity -- 2.3.1.3 Authentication of the User's Identity -- 2.4 Challenges Associated with Blockchain Technology.
2.4.1 Unavailability of Uniformity -- 2.4.2 Decentralization of Storage and Leakage of Privacy -- 2.4.3 Handling of Critical Information -- 2.4.4 Scalability and Internet of Things Overhead -- 2.4.5 Vulnerabilities Specific to Blockchain Technology -- 2.4.6 General Vulnerabilities in Software -- 2.5 Opportunities of Blockchain in the Healthcare Industry -- 2.5.1 The Gem Health Network Facilitates the Exchange of Healthcare Data -- 2.5.2 MDREC -- 2.5.3 System of Pervasive Social Network -- 2.5.4 Virtual Resources -- 2.5.5 Data Recording for Body-Worn Sensing Devices Based on Context -- 2.5.6 MeDShare -- 2.5.7 Blockchain-Based Clinical and Precise Platform Trials -- 2.5.8 Access to Health-Related Information -- 2.6 Concluding Remarks -- References -- Chapter 3 Blockchain Technology and Healthcare: Towards Combating COVID-19 -- 3.1 Introduction -- 3.1.1 Blockchain Technology in Healthcare -- 3.1.2 Features of Blockchain Technology -- 3.1.3 Applications of Blockchain in Healthcare -- 3.1.4 Data Management -- 3.1.5 Electronic Health Record -- 3.1.6 Claims and Billing Management -- 3.1.7 Pandemic Data Tracking -- 3.1.8 Tracking PPE -- 3.1.9 Vaccine Monitoring -- 3.1.10 Future Vaccination -- 3.1.11 Digital Contact Tracing -- 3.1.12 Prescription Management -- 3.2 Combating COVID-19 -- 3.2.1 Handling Fake Infodemic Using MiPasa Platform -- 3.2.2 VIRI Platform Preventing Spread -- 3.2.3 WIShelter for Data Privacy -- 3.3 Reviving Capabilities -- 3.3.1 Blockchain in Healthcare - Global Scenario -- 3.3.2 Blockchain in Healthcare - Indian Scenario -- 3.4 Challenges in Adopting Blockchain in Healthcare -- 3.5 Conclusion -- References -- Chapter 4 Blockchain-Based Energy-Efficient Heterogeneous Sensor Networks in Healthcare System -- 4.1 Introduction -- 4.2 Related Work -- 4.2.1 Literature Gap -- 4.2.2 Fuzzy Improved Model (Improved Model Fuzzy). 4.3 Proposed Energy Protocol with Blockchain -- 4.4 Conclusion -- References -- Chapter 5 Development of a Safe Health Framework Using a Temporary Blockchain Technique -- 5.1 Introduction -- 5.2 Related Work -- 5.2.1 Blockchain-Based Healthcare Organization -- 5.2.2 Medrek -- 5.2.3 Stratum -- 5.2.4 Factor -- 5.2.5 Pocketbook -- 5.2.6 Tyrion -- 5.2.7 Roomed -- 5.3 Secure Framework (Sefira) for Healthcare System -- 5.3.1 Progressive Temporal Blockchain -- 5.3.2 Temporal Shadow -- 5.3.2.1 Context-Based Merkle Tree (CBMT) -- 5.3.2.2 Temporal Hash Signature (THS) -- 5.3.2.3 Context-Based Access Control (CBAC) in Smart Contract -- 5.3.2.4 Layered Architecture of SeFra -- 5.4 Conclusion -- References -- Chapter 6 Data Consistency, Transparency, and Privacy in Healthcare Systems Using Blockchain Technology -- 6.1 Introduction -- 6.2 The Cutting Edge in Genomics -- 6.2.1 Next Generation Sequencing (NGS) -- 6.2.2 EDGE Bioinformatics -- 6.2.3 Pharmacogenetics and Personalized Medicine -- 6.2.4 Prenatal Diagnosis -- 6.2.5 Diagnosis of Infectious Diseases -- 6.2.6 Gene Therapy and Genome Editing -- 6.2.7 Genomics with Blockchain Technology -- 6.3 Medical Records -- 6.3.1 Blockchain Architecture - Components and Types -- 6.3.2 Blockchain Benefits in Healthcare Records Maintenance -- 6.3.3 Brief Overview on the Blockchain-Enabled Patient Healthcare Record Management Process -- 6.3.3.1 Data Generation -- 6.3.3.2 Data Cleaning and Enrichment -- 6.3.3.3 Data Capturing -- 6.3.3.4 Data Consumption -- 6.3.3.5 Data Mining -- 6.4 Supply Chain Management -- 6.4.1 Pharmaceutical Applications -- 6.4.2 Medical Devices and Medical Supplies -- 6.4.3 Internet of Healthy Things -- 6.4.4 Public Health -- References -- Part 2: Blockchain in the Energy Sector -- Chapter 7 Application of Blockchain Technology in Sustainable Energy Systems -- 7.1 Introduction -- 7.2 Blockchain. 7.3 Blockchain Applications in Energy Sector -- 7.3.1 Blockchain Applications in Smart Grid -- 7.3.2 Blockchain Applications in Energy Trading -- 7.3.3 Blockchain Applications in Micro-Grid -- 7.3.4 Blockchain in Electric Vehicles -- 7.3.5 Blockchain Applications in Cyber Physical Security -- 7.4 Blockchain as New Substructure -- 7.5 Limitations of Blockchain -- 7.6 Conclusions -- References -- Chapter 8 Revamping Energy Sector with a Trusted Network: Blockchain Technology -- 8.1 Introduction -- 8.2 Energy Digital Transformation -- 8.2.1 Digitalization, Decarbonization, and Decentralization of the Energy Sector -- 8.2.2 Blockchain: A Disruptive Technology of the Energy Value Chain -- 8.2.3 Blockchain Advancing DERs -- 8.3 Energy Trading Mechanisms -- 8.3.1 Blockchain P2P Energy Trading: A New Financing Mechanism -- 8.3.2 Blockchain-Based Virtual Power Plant (VPP) Model -- 8.3.3 Blockchain Technology for Electric Vehicle (EV) Charging and Discharging -- 8.4 Blockchain Unlocking New Demand Side Management Models -- 8.4.1 Blockchain in the Energy Efficiency Market -- 8.4.2 New Blockchain-Enabled Demand Response (DR) Models -- 8.4.3 Blockchain-Based Energy Performance Contracting -- 8.5 Energy Blockchain's Social and Environmental Impacts -- 8.5.1 Blockchain Market for Carbon Credits and RECs -- 8.5.2 Fighting Energy Poverty -- 8.6 Conclusion -- References -- Part 3: The Impact of Blockchain on the Financial Industry -- Chapter 9 Process Innovation and Unification of KYC Document Management System with Blockchain in Banking -- 9.1 Introduction -- 9.2 Blockchain -- 9.3 Blockchain Technology Applications Sectors -- 9.4 Know Your Customer (KYC) -- 9.4.1 KYC Advantages -- 9.4.2 KYC Document List -- 9.4.3 Re-KYC -- 9.4.4 Types of KYC Verification -- 9.4.5 KYC Through Manual Verification Process -- 9.4.6 Typical KYC Verification Process - Issues and Challenges. 9.5 Electronic Know Your Customer (e-KYC) -- 9.5.1 e-KYC Documents Management System Using Blockchain -- 9.6 Blockchain KYC Verification Process Advantages -- 9.7 Taxonomy of Blockchain Systems -- 9.8 Literature Survey -- 9.9 Potential Use-Cases of Blockchain Technology in Banks -- 9.10 Blockchain KYC-AML Solution -- 9.11 Conclusion -- References -- Chapter 10 Applying Blockchain Technology to Address NPA Issues During the COVID-19 Pandemic -- 10.1 Introduction -- 10.2 ACT 1: Foundation of Non-Performing Assets Management and Blockchain Technology -- 10.3 Induction to Non-Performing Assets -- 10.4 Charter for NPA Management -- 10.5 Reasons for Growth of NPAs -- 10.6 Induction to Blockchain Technology -- 10.7 Possible Applications of Blockchain Technology -- 10.8 ACT II Confrontation Stage -- 10.9 Investigation of Loan Quality-Related Issues in the Indian Banking System -- 10.10 Stage 3 - Treatment Stage for Bad Loans Through Blockchain in Indian Banks -- 10.11 The Challenges of the Blockchain Technology in Financial Sector -- 10.12 Conclusion -- References -- Chapter 11 Blockchain and Smart Contracts for Insurance Industry -- 11.1 Introduction -- 11.1.1 Blockchain in Insurance -- 11.1.2 Blockchain in Insurance Applications -- 11.2 Smart Contracts by Insurance Providers Using Blockchain Technologies -- 11.2.1 Blockchain: A Built-In Data -- 11.2.2 Advanced Insurance Automation -- 11.2.3 Cyber Security in Insurance through Blockchain -- 11.3 Review of Literature -- 11.4 Opportunities Provided by Blockchain Technology -- 11.5 How Blockchain Technologies Work in Insurance Companies -- 11.6 Challenges Posed by Blockchain -- 11.6.1 Technologies Leveraging Technologies -- 11.6.2 Strategic Alliances -- 11.6.3 New Product Development -- 11.7 Conclusion -- References -- Chapter 12 How Blockchain Can Transform the Financial Services Industry -- 12.1 Introduction. 12.2 Literature Review. |
| Record Nr. | UNINA-9910623987903321 |
Sood Kiran
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Blockchain with Artificial Intelligence for Healthcare : A Synergistic Approach
| Blockchain with Artificial Intelligence for Healthcare : A Synergistic Approach |
| Autore | Malviya Rishabha |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Bristol : , : Institute of Physics Publishing, , 2023 |
| Descrizione fisica | 1 online resource (209 pages) |
| Disciplina | 610.285 |
| Altri autori (Persone) |
SinghArun Kumar
SundramSonali BalusamyBalamurugan KadrySeifedine |
| Collana | IOP Ebooks Series |
| ISBN | 0-7503-5841-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910915779203321 |
Malviya Rishabha
|
||
| Bristol : , : Institute of Physics Publishing, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Digital Twins in Industrial Production and Smart Manufacturing : An Understanding of Principles, Enhancers, and Obstacles
| Digital Twins in Industrial Production and Smart Manufacturing : An Understanding of Principles, Enhancers, and Obstacles |
| Autore | Dhanaraj Rajesh Kumar |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (444 pages) |
| Altri autori (Persone) |
BalusamyBalamurugan
SamuelPrithi BashirAli Kashif KadrySeifedine |
| ISBN |
1-394-19533-8
1-394-19532-X 1-394-19531-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910889695103321 |
Dhanaraj Rajesh Kumar
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Drones for Transportation Logistics and Disaster Management
| Drones for Transportation Logistics and Disaster Management |
| Autore | Prasanth A |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| Descrizione fisica | 1 online resource (430 pages) |
| Altri autori (Persone) |
DhanarajRajesh Kumar
SabharwalMunish SharmaVandana KadrySeifedine |
| ISBN |
1-394-38645-1
1-394-38644-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Journey to Transportation and Logistics Management Using Drone: Digitization and Technological Evolution -- 1.1 Introduction -- 1.1.1 Drone Development and Advancements -- 1.1.2 Sustainability Concern -- 1.2 Literature Review -- 1.3 Fundamental Elements of Drone Technology -- 1.4 Evolution of Drone Technology -- 1.5 Use Case in Various Sectors -- 1.6 Application in Transportation and Logistics -- 1.7 Conclusion -- References -- Chapter 2 Challenges of Big Data Implementation in Drone-Based Logistics -- 2.1 Introduction -- 2.2 Related Works -- 2.3 Big Data in Transit -- 2.4 Factors Affecting UAV Implementation in Logistics -- 2.4.1 Legal Factors -- 2.4.2 Financial Factors -- 2.4.3 Knowledge and Behavioral Factors -- 2.4.4 Privacy and Safety Factors -- 2.5 Conclusion -- References -- Chapter 3 Frameworks for Handover Management for the Networks of Future Drones -- 3.1 An Overview -- 3.2 Literature Review -- 3.3 Handover Management for Future Drone Networks (HOM-FDN) -- 3.4 Results and Discussion -- 3.4.1 Accuracy Analysis -- 3.4.2 Efficiency Analysis -- 3.4.3 Performance Analysis -- 3.4.4 Safety Analysis -- 3.4.5 Prediction Analysis -- 3.5 Conclusion -- References -- Chapter 4 Convergence of Internet of Vehicle Things and Drones: An Interoperability Perspective -- 4.1 Introduction -- 4.1.1 Overview of IoT in Vehicles and Drones -- 4.1.2 Significance of Convergence -- 4.1.3 Significance of Interoperability -- 4.2 Communication Standards for Integration -- 4.2.1 Vehicular Communication Standards -- 4.2.2 Drone Communication Standards -- 4.2.3 Cross-Domain Communication Standards -- 4.2.4 Interoperability Considerations -- 4.3 Data Exchange Protocols -- 4.3.1 IoVT Data Exchange Protocols -- 4.3.2 Drone Data Exchange Protocols.
4.3.3 Cross-Domain Data Exchange Protocols -- 4.3.4 Interoperability Considerations -- 4.4 Integration with Edge Computing -- 4.4.1 IoVT Integration with Edge Computing -- 4.4.2 Drone Integration with Edge Computing -- 4.5 Security and Privacy Measures -- 4.5.1 Security Measures -- 4.5.2 Privacy Measures -- 4.6 IoVT Regulations -- 4.6.1 Automotive Industry Standards -- 4.6.2 Compliance with Road Safety Regulations -- 4.6.3 Drone Regulations -- 4.7 Cross-Industry Collaboration -- 4.7.1 Synergies between IoVT and Drones -- 4.7.2 Industry Partnerships -- 4.8 Interoperability Challenges -- 4.8.1 Technical Challenges -- 4.8.2 Regulatory Challenges -- 4.9 Application and Future of IoVT and Drones -- 4.10 Conclusion -- References -- Chapter 5 5G Communication in Drones for Surveillance in Future Transportation Activities -- 5.1 Introduction -- 5.2 Overview of 5G Communication -- 5.2.1 Key Features of 5G Networks -- 5.3 Drones in Transportation -- 5.3.1 Surveillance and Inspection -- 5.3.2 Delivery Services -- 5.3.3 Current Challenges for the Usage of Drones in Transportation -- 5.4 Drones and 5G Integration -- 5.5 Network Architecture for Drone and 5G in Transportation -- 5.5.1 Infrastructure of 5G Network -- 5.5.2 Edge Computing and Low Latency -- 5.5.3 Drone Traffic Management System -- 5.5.4 Authentication and Security -- 5.5.5 Analytics and Network Monitoring -- 5.5.6 Ground Control Stations (GCS) -- 5.5.7 Regulatory Compliance -- 5.5.8 Integration with Other Transportation Systems -- 5.5.9 Redundancy and Scalability -- 5.6 Security and Privacy Considerations -- 5.6.1 Security Considerations -- 5.6.2 Privacy Considerations -- 5.6.3 Enhanced Security Features in 5G -- 5.7 Regulatory and Ethical Considerations -- 5.7.1 Regulatory Considerations -- 5.7.2 Ethical Considerations -- 5.8 Future Trends and Innovations -- 5.9 Conclusion -- References. Chapter 6 Impact and Assessment of Artificial Intelligence-Enabled UAV for Real-Time Data Streaming Application -- 6.1 Introduction -- 6.2 Overview of UAVs Powered by AI -- 6.2.1 Understanding AI-Enabled UAVs: Definition and Features -- 6.2.2 Capabilities of AI-Enabled UAVs -- 6.2.3 Advantages of Using UAVs for Data Streaming -- 6.2.3.1 Quick and Effective Information Gathering -- 6.2.3.2 Improved Safety Features and Higher Cost- Effectiveness -- 6.2.3.3 Accuracy and Precision -- 6.2.3.4 Real-Time Decision Support -- 6.2.3.5 Access to Remote Regions -- 6.2.3.6 Enhanced Monitoring and Surveillance -- 6.2.3.7 Scalability and Flexibility -- 6.2.4 Most Important Technologies and Components Utilized -- 6.3 Applications of AI-Enabled UAVs in Real-Time Data Streaming -- 6.3.1 Environmental Monitoring and Conservation -- 6.3.1.1 Wildlife Conservation -- 6.3.1.2 Forestry and Land Governance -- 6.3.1.3 Marine and Coastal Surveillance -- 6.3.1.4 Environmental Research -- 6.3.2 Disaster Management and Response -- 6.3.2.1 Search and Rescue Operations -- 6.3.2.2 Damage Assessment -- 6.3.2.3 Hazard Monitoring -- 6.3.2.4 Evacuation Planning -- 6.3.3 Precision Agriculture and Crop Monitoring -- 6.3.3.1 Crop Health Assessment -- 6.3.3.2 Irrigation Management -- 6.3.3.3 Yield Forecasting -- 6.3.3.4 Soil Analysis -- 6.3.4 Infrastructure Inspection and Maintenance -- 6.3.4.1 Bridge and Building Inspections -- 6.3.4.2 Power Line and Utility Inspections -- 6.3.4.3 Monitoring Oil and Gas Facilities -- 6.3.4.4 Railway and Pipeline Inspections -- 6.3.5 Surveillance and Public Safety -- 6.4 Case Studies: Real-World Implementations -- 6.4.1 AI-Enabled UAVs for Monitoring Wildlife Populations -- 6.4.2 UAV-Based Aerial Imagery for Disaster Assessment -- 6.4.3 Precision Agriculture Using AI Algorithms and UAVs -- 6.4.4 Automated Infrastructure Inspection with UAVs. 6.4.5 UAVs for Surveillance and Emergency Response -- 6.4.6 Machine Learning and Deep Learning Techniques -- 6.4.6.1 Advancements in Machine Learning -- 6.4.6.2 Reinforcement Learning (RL) -- 6.4.6.3 Transfer Learning -- 6.4.6.4 Interpretable Models -- 6.4.6.5 Advancements in Deep Learning -- 6.4.6.6 Convolutional Neural Networks -- 6.4.6.7 Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) -- 6.4.6.8 Generative Adversarial Networks (GANs) -- 6.4.7 Object Detection and Recognition -- 6.4.7.1 Single-Stage Object Detectors -- 6.4.7.2 Two-Stage Object Detectors -- 6.4.7.3 Optimal Object Detection -- 6.4.7.4 Fine-Grained Object Recognition -- 6.4.8 Image and Video Processing -- 6.4.8.1 Real-Time Image Segmentation -- 6.4.8.2 Image and Video Signature -- 6.4.8.3 Video Analysis -- 6.4.8.4 Model Generation for Creativity and Art -- 6.4.9 Sensor Fusion and Data Integration -- 6.4.9.1 Multimodal Sensor Fusion -- 6.4.9.2 Healthcare Data Integration -- 6.4.9.3 Environmental Monitoring -- 6.4.9.4 Industrial Automation -- 6.4.9.5 Smart Cities -- 6.5 Challenges and Considerations in AI-Enabled UAVs for Real- Time Data Streaming Applications -- 6.5.1 Data Privacy and Security -- 6.5.2 Regulatory Frameworks and Airspace Management -- 6.5.3 Technical Constraints and Limitations -- 6.5.4 Ethical Considerations and Societal Impact -- 6.6 Future Directions and Opportunities -- 6.6.1 Integration of AI and UAV Technologies -- 6.6.2 Collaborative Research and Development -- 6.6.3 Policy Implications and Standardization -- 6.6.4 Advancements in Hardware and Software Solutions -- 6.7 Conclusion and Future Enhancements -- References -- Chapter 7 Blockchain-Based Security and Privacy Solutions for Drones Systems -- 7.1 Introduction -- 7.1.1 Principle Functionality of the Blockchain -- 7.1.2 Foundation of Drones -- 7.1.3 Blockchain and Drones Security. 7.1.4 Related Work -- 7.2 Drones - The New Network Architecture -- 7.2.1 Components and Parameters -- 7.2.2 Drone Parameters -- 7.2.3 Drones Network Topology Architecture -- 7.3 Drones Privacy Solutions -- 7.4 Integration of Blockchain Functioning with Drones -- 7.5 Security Challenges and the Road Ahead -- 7.6 Conclusion -- References -- Chapter 8 Design and Development of Modular and Multifunctional UAV for Amphibious Landing and Surround Sense Module -- 8.1 Introduction -- 8.2 UAV Design Considerations -- 8.2.1 Design Parameters and Features -- 8.2.2 Aerodynamic Characteristics -- 8.2.3 Power Requirements -- 8.3 Development of Modular UAV -- 8.4 Surround Sense Module -- 8.5 Integration and Testing -- 8.6 Conclusion -- Acknowledgement -- References -- Chapter 9 Implementing Mission Critical Public Safety Using Communication in Drones Network -- 9.1 Introduction -- 9.2 Related Work -- 9.3 UAV - Characteristics and Strategies -- 9.3.1 What is UAV? -- 9.3.2 How Does UAV Work? -- 9.3.3 UAV Categorization -- 9.3.4 Drones for Public Security -- 9.3.5 UAV Placement Strategies -- 9.4 Communication Framework Support by UAVs -- 9.4.1 Potential Roles -- 9.5 Conclusion -- References -- Chapter 10 Assessing the Impact of Drones on Students' Engagement and Learning Outcomes -- 10.1 Introduction -- 10.1.1 Background and Context of the Study -- 10.1.2 Significance of Exploring Drone-Assisted Learning -- 10.1.3 Research Objectives -- 10.2 Literature Review -- 10.2.1 Overview of Drones in Education -- 10.2.2 Previous Research on Student Engagement and Learning Outcomes with Technology Integration -- 10.2.3 Theoretical Frameworks Supporting the Use of Drones in Education -- 10.3 Methodology -- 10.3.1 Research Design and Approach -- 10.3.2 Participant Selection and Sampling Strategy -- 10.3.3 Data Collection Methods -- 10.3.4 Data Analysis Plan. 10.4 Implementation of Drone-Assisted Learning Activities. |
| Record Nr. | UNINA-9911038525403321 |
Prasanth A
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Federated Intelligent System for Healthcare : A Practical Guide
| Federated Intelligent System for Healthcare : A Practical Guide |
| Autore | Kumar S. Rakesh |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| Descrizione fisica | 1 online resource (313 pages) |
| Disciplina | 610.28563 |
| Altri autori (Persone) |
GayathriN
KadrySeifedine |
| ISBN |
1-394-27138-7
1-394-27137-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9911019843903321 |
Kumar S. Rakesh
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Green computing in smart cities : simulation and techniques / / Balamurugan Balusamy, Naveen Chilamkurti, Seifedine Kadry, editors
| Green computing in smart cities : simulation and techniques / / Balamurugan Balusamy, Naveen Chilamkurti, Seifedine Kadry, editors |
| Edizione | [1st ed. 2021.] |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (X, 206 p. 80 illus., 64 illus. in color.) |
| Disciplina | 004.0286 |
| Collana | Green energy and technology |
| Soggetto topico |
Computer systems - Energy conservation
Information technology - Environmental aspects Data processing service centers - Energy conservation |
| ISBN | 3-030-48141-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Smart cities: redefining urban energy -- From smart energy to smart cities -- Energy management and planning in smart cities -- Energy technologies: Recommendations for future smart cities -- Green Technology for Smart Cities -- Optimal Renewable Energy Systems for Smart Cities -- Smart Parking: Green IoT for Smart City -- Green Internet of Things for Smart Cities -- Design of Cloud-Based Green IoT Architecture for Smart Cities -- Green-energy, water-autonomous greenhouse system -- Energy-Efficient Device-to-Device Communications for Green Smart Cities -- Greening the Smart Cities: Energy-Efficient Massive Content Delivery via D2D Communications -- Green Communications in Smart City -- Smart City Community Green Computing with Cyber Security -- Smart Cities: Environmental Challenges and Green Computing -- Ubiquitous Green Computing Techniques for High Demand Applications in Smart Environments -- Green Computing and Communications -- Toward Big Data in Green City -- How Green Building In Smart Cities Attaining Energy Efficiency? |
| Record Nr. | UNINA-9910484891103321 |
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Integrating Nanorobotics with Biophysics for Cancer Treatment
| Integrating Nanorobotics with Biophysics for Cancer Treatment |
| Autore | Malviya Rishabha |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Bristol : , : Institute of Physics Publishing, , 2024 |
| Descrizione fisica | 1 online resource (291 pages) |
| Altri autori (Persone) |
YadavDeepika
SundramSonali KadrySeifedine S VirkGurvinder |
| Collana | Biophysical Society-IOP Series |
| ISBN |
9780750360197
9780750360203 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Foreword -- Author biographies -- Rishabha Malviya -- Deepika Yadav -- Sonali Sundram -- Seifedine Kadry -- Gurvinder Singh Virk -- About the book -- Chapter Nanorobotics: materials, design, and technology -- 1.1 Introduction -- 1.2 Nanorobot design and development -- 1.3 Nanorobots designed for a broad spectrum of healthcare uses -- 1.4 The applications of nanorobots in the field of biomedicine -- 1.4.1 Microbiology -- 1.4.2 Cancer therapy using nanorobots -- 1.4.3 Biologically inspired nanorobots -- 1.4.4 The prospects of nanorobots for use in hematology -- 1.4.5 The neurosurgical prospects of nanorobots -- 1.5 The prospects of nanorobots for use in dentistry -- 1.6 The use of nanorobots in gene therapy -- 1.7 The biocompatibility and toxicity of nanorobots -- 1.8 Conclusions -- References and further reading -- Chapter Robotics and biophysics: technology advances and challenges in organic and inorganic domains -- 2.1 Introduction -- 2.2 An introduction to the use of robots in the field of biophysics -- 2.2.1 The importance of robots in the field of biophysical research -- 2.2.2 The possible application of robots in areas of biophysical investigation -- 2.2.3 Biophysical applications of robot-based systems -- 2.3 Technology advances of soft robotics in the organic domain -- 2.3.1 The applications of soft robots in medical and biological settings -- 2.3.2 Biomimetic design -- 2.3.3 The benefits of biomimetic design in biophysics -- 2.3.4 The challenges of applying biomimetic design principles in the field of biophysics -- 2.4 Developments in inorganic measurement technology -- 2.4.1 The integration of advanced prosthetic limbs and biophysics -- 2.4.2 Robotics in diagnostic imaging and laboratory tasks -- 2.5 Challenges in integration -- 2.5.1 Ethical and regulatory issues.
2.5.2 Regulatory challenges in the development of biophysics-based robotic systems -- 2.5.3 Interdisciplinary collaboration -- 2.6 Future prospects -- 2.7 Conclusions -- References -- Chapter Nanorobots: a primer for deciphering the biophysics of cancer -- 3.1 Introduction -- 3.2 Multiscale cancer biophysics -- 3.3 The biology of cancer cells -- 3.4 The reason for a biophysical strategy for cancer -- 3.5 Nanorobots -- 3.6 Nanorobots for the detection and treatment of cancer -- 3.7 Conclusions -- References and further reading -- Chapter The biophysics of cancer: management at the nanoscale -- 4.1 Introduction -- 4.2 Important aspects of nanorobots for cancer therapy -- 4.3 Nanorobot propulsion systems for anticancer medicine delivery -- 4.3.1 Nanorobots propelled by magnets -- 4.3.2 Nanorobots propelled by ultrasound -- 4.3.3 Biologically propelled nanorobots -- 4.3.4 Hybrid-drive nanorobots -- 4.3.5 Nanorobots propelled by other power sources -- 4.4 Precision cancer diagnosis and treatment with nanorobots -- 4.4.1 The identification and assessment of cancerous conditions -- 4.4.2 Gene therapy involving the precise administration of nucleic DNA -- 4.4.3 Vascular infarction in tumors -- 4.5 Nanorobots in cancer therapy: potential and clinical problems -- 4.5.1 The complexity and accuracy of the technology -- 4.5.2 Concerns regarding personal safety -- 4.5.3 Regulatory concerns -- 4.5.4 Scalability -- 4.5.5 Cost -- 4.5.6 Quality control -- 4.5.7 Management of the supply chain and its components -- 4.6 Future perspectives and conclusions -- References -- Chapter Magnetomechanical systems at the micro/nanoscale for cancer management -- 5.1 Introduction -- 5.2 Cancer therapy using magnetomechanical particles -- 5.2.1 Principle -- 5.3 The magnetomechanical identification of telomerase and nuclear acids in cancerous cells. 5.4 The therapeutic applications of telomerase studies in cancer -- 5.5 The clinical applications of telomeres and telomerase in oncology -- 5.6 Conclusions -- Funding -- Conflict of interest -- References -- Chapter The role of micro/nanorobotics in personalized healthcare -- 6.1 Introduction -- 6.2 Surgical operations -- 6.2.1 Biopsy and sample collection -- 6.2.2 The invasion or penetration of tissues -- 6.2.3 The breakdown of biofilms -- 6.2.4 Deliveries conducted within cells -- 6.3 Diagnosis -- 6.3.1 Biological sensors -- 6.3.2 Isolation -- 6.3.3 Physical sensors -- 6.4 Imaging and diagnostic medicine -- 6.4.1 Optical imaging -- 6.4.2 Imaging using ultrasound -- 6.4.3 Imaging using radionuclides -- 6.5 Prospective view -- 6.6 Regulatory challenges in personalized healthcare -- 6.7 Conclusions -- References and further reading -- Chapter The development of active nanorobots in personalized healthcare -- 7.1 Introduction -- 7.2 Nanorobots -- 7.3 Nanorobots in healthcare -- 7.3.1 Helices -- 7.3.2 Nanorods -- 7.3.3 DNA nanorobots -- 7.4 Applications of nanorobots in personalized healthcare -- 7.4.1 The use of nanorobots in dentistry -- 7.4.2 The use of nanorobots in cancer treatment -- 7.4.3 The application of nanorobots in the treatment and diagnosis of diabetes -- 7.4.4 The application of nanorobots in neurology -- 7.4.5 The application of nanorobots in hematology -- 7.5 Future perspectives -- 7.6 Conclusions -- References -- Chapter Nanozyme-based nanorobots for cancer treatment applications -- 8.1 Introduction -- 8.2 Nanomedicine and nanotheranostics -- 8.3 Targeted tumor vessel infarction with nanomedicine -- 8.4 Targeted tumor drug delivery systems -- 8.4.1 Passively targeted drug delivery systems -- 8.4.2 Actively targeted medication delivery systems -- 8.5 Micro- and nanorobots -- 8.5.1 Chemically powered micro- and nanorobots. 8.5.2 External-field-powered micro- and nanorobots -- 8.5.3 Biohybrid micro- and nanorobots -- 8.6 Difficulties with cancer nanomedicines -- 8.7 Future perspectives -- 8.8 Conclusions -- References -- Chapter Progress in the bioelectrochemical and biophysical diagnostic profiling of malignant cancer cells -- 9.1 Introduction -- 9.2 The use of biosensors in clinical assessment -- 9.3 Electrochemical biosensors -- 9.3.1 Various electrochemical measurement methods -- 9.4 Conventional apoptotic and metastatic cell detection methods -- 9.5 Bioelectricity in cancer processes -- 9.5.1 Cancer and ion channels -- 9.5.2 Calcium channels -- 9.5.3 Sodium channels -- 9.5.4 Intracellular potassium channels -- 9.5.5 Chloride channels -- 9.5.6 Piezoelectric channels -- 9.6 The detection of bioelectric characteristics -- 9.7 Bioelectrical modifications -- 9.8 Electrification and extracellular vesicles -- 9.9 Biosensors for in vitro cancer cell assessment -- 9.10 Conclusions -- References and further reading -- Chapter Wireless microrobots: the next frontier in medical advancements -- 10.1 Introduction -- 10.2 Microrobots and their potential therapeutic applications -- 10.2.1 The imaging of functional capabilities for disorder diagnosis -- 10.2.2 Mobile situational awareness for disease diagnosis and health management -- 10.3 Targeted therapy -- 10.4 The applications of microrobotics in medicine, particularly in the human cardiovascular system and the bloodstream -- 10.5 Biomechanical restrictions that impede microrobots -- 10.6 Current challenges facing miniaturized biomedical robots and their potential future applications -- 10.7 Methods for the actuation and control of therapeutic microrobots -- 10.8 Conclusions -- References and further reading -- Chapter Revolutionizing cancer treatment using micro/nanorobotic devices -- 11.1 Introduction. 11.2 Nano/microrobots for drug delivery -- 11.3 Cancer-targeted drug delivery systems -- 11.3.1 Enhancing treatment precision using passive drug delivery -- 11.3.2 Enhancing treatment precision using active drug targeting -- 11.3.3 Surgical advancements with micro/nanorobotic assistance -- 11.3.4 Robotic biosensing -- 11.3.5 Enhancing drug delivery with micro/nanorobot mobility -- 11.3.6 Field-guided micro/nanorobotics -- 11.4 Conclusions and prospects -- References and further reading -- Chapter Cyborgs and cyberorgans: biosecurity in biorobotics for healthcare-a case study -- 12.1 Introduction -- 12.2 Biorobotics in healthcare -- 12.3 Cyborgs and cyberorgans in healthcare -- 12.4 Case study -- 12.5 Patent list -- 12.6 Conclusions -- References. |
| Record Nr. | UNINA-9911026074003321 |
Malviya Rishabha
|
||
| Bristol : , : Institute of Physics Publishing, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||