Vai al contenuto principale della pagina

Fixed point theory in metric type spaces / / by Ravi P. Agarwal, Erdal KARAPINAR, Donal O’Regan, Antonio Francisco Roldán-López-de-Hierro



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Agarwal Ravi P Visualizza persona
Titolo: Fixed point theory in metric type spaces / / by Ravi P. Agarwal, Erdal KARAPINAR, Donal O’Regan, Antonio Francisco Roldán-López-de-Hierro Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Edizione: 1st ed. 2015.
Descrizione fisica: 1 online resource (395 p.)
Disciplina: 515.7
Soggetto topico: Numerical analysis
Functions of real variables
Functional analysis
Numerical Analysis
Real Functions
Functional Analysis
Persona (resp. second.): KARAPINARErdal
O’ReganDonal
Roldán-López-de-HierroAntonio Francisco
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Introduction with a Brief Historical Survey -- Preliminaries -- G-Metric Spaces -- Basic Fixed Point Results in the Setting of G-Metric Spaces -- Fixed Point Theorems in Partially Ordered G-Metric Spaces -- Further Fixed Point Results on G-Metric Spaces -- Fixed Point Theorems via Admissible Mappings -- New Approaches to Fixed Point Results on G-Metric Spaces -- Expansive Mappings -- Reconstruction of G-Metrics: G*-Metrics -- Multidimensional Fixed Point Theorems on G-Metric Spaces -- Recent Motivating Fixed Point Theory.
Sommario/riassunto: Written by a team of leading experts in the field, this volume presents a self-contained account of the theory, techniques and results in metric type spaces (in particular in G-metric spaces); that is, the text approaches this important area of fixed point analysis beginning from the basic ideas of metric space topology. The text is structured so that it leads the reader from preliminaries and historical notes on metric spaces (in particular G-metric spaces) and on mappings, to Banach type contraction theorems in metric type spaces, fixed point theory in partially ordered G-metric spaces, fixed point theory for expansive mappings in metric type spaces, generalizations, present results and techniques in a very general abstract setting and framework. Fixed point theory is one of the major research areas in nonlinear analysis. This is partly due to the fact that in many real world problems fixed point theory is the basic mathematical tool used to establish the existence of solutions to problems which arise naturally in applications. As a result, fixed point theory is an important area of study in pure and applied mathematics and it is a flourishing area of research.
Titolo autorizzato: Fixed Point Theory in Metric Type Spaces  Visualizza cluster
ISBN: 3-319-24082-X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910300250003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui