Nanotechnology for bioapplications / / Bong-Hyun Jun, editor |
Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (vi, 292 pages) : illustrations |
Disciplina | 620.5 |
Collana | Advances in experimental medicine and biology |
Soggetto topico |
Nanobiotechnology
Ultraestructura (Biologia) |
Soggetto genere / forma | Llibres electrònics |
ISBN | 981-336-158-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Contents -- 1: Introduction of Nanobiotechnology -- 1.1 Introduction -- 1.2 What Is Nanotechnology? -- 1.2.1 How Small Is Nano? -- 1.2.2 Nanofabrication and Analytical Tools -- 1.2.3 Exotic Properties of the Nanomaterials -- 1.3 Classification of Nanomaterials and Their Application -- 1.3.1 Metal NPs -- 1.3.2 Magnetic NPs -- 1.3.3 Quantum Dots (QDs) -- 1.3.4 Silica NPs -- 1.3.5 Carbon NPs -- 1.4 Nanotoxicology and Future Perspective -- Bibliography -- 2: General in Colloidal Nanoparticles -- 2.1 Introduction -- 2.2 Fabrication of Nanoparticles -- 2.2.1 Nucleation and Growth -- 2.2.1.1 Nucleation -- 2.2.1.2 Growth Kinetics -- 2.2.2 Size Control -- 2.2.2.1 Nucleation Control -- 2.2.2.2 Ostwald Ripening and Sintering -- 2.2.2.3 Microemulsion Method (Template-Based Method) -- 2.3 Stabilization of Nanocrystals Against Aggregation -- 2.3.1 Aggregation -- 2.3.2 Surface Charge -- 2.3.3 Electrical Double Layer -- 2.3.4 Van der Waals Attraction -- 2.3.5 DLVO (Derjaguin, Landau, Verwey, Overbeek) Theory -- 2.3.6 Steric Stabilization -- Bibliography -- 3: Silica Nanoparticles -- 3.1 Introduction -- 3.2 Synthesis of Silica Nanoparticles -- 3.2.1 Stöber Method (Nucleation and Growth) -- 3.2.2 Reverse Microemulsions -- 3.2.3 Modified Sol-Gel Method for Silica Coating -- 3.2.4 Modified Sol-Gel Method for Controlling Shape and Porosity -- 3.3 Surface Modification for Functionalization of Silica Nanoparticles -- 3.4 Various Nanoparticles Applied to Silica -- 3.4.1 Various Silica-Coated Nanoparticles -- 3.4.2 Porous Silica Nanoparticles -- 3.4.3 Synthesis of Various Nanoparticles Using Silica as a Template -- 3.5 Various Silica-Applied Nanoparticles for Bioapplications -- 3.5.1 Biosensing and Bioimaging for Diagnostics -- 3.5.2 Drug Delivery -- 3.5.3 Multifunctional Silica Nanoparticles -- 3.6 Conclusion.
Bibliography -- 4: Luminescent Nanomaterials (I) -- 4.1 Introduction -- 4.2 Basics of Fluorescence -- 4.2.1 Light and Luminescence -- 4.2.2 Fluorescence Process and Related Terminologies -- 4.2.3 Organic Dyes As Fluorophores -- 4.3 Luminescent Nanoparticles -- 4.3.1 Fluorescence Organic Dye-Incorporated Materials -- 4.3.1.1 Dye-Doped Silica Nanoparticles -- 4.3.1.2 Fluorescence-Encoded Beads -- 4.3.2 Quantum Dots (QD) -- 4.3.2.1 Fundamentals of QDs -- Quantum Confinement Effect -- Optical Properties -- Quantum Yield and Surface Structures -- 4.3.2.2 Synthesis of Quantum Dots -- 4.3.2.3 Surface Modifications -- 4.3.3 Upconversion Fluorescent Nanoparticles -- 4.3.3.1 Fundamentals of UCNPs -- 4.3.3.2 Synthesis and Surface Modification of UCNPs -- 4.3.4 Other Luminescent Nanomaterials -- 4.3.4.1 Europium-Based Materials -- 4.3.4.2 Noble Metal Nanoclusters -- 4.3.4.3 Other Carbon-Based QDs -- References -- 5: Luminescent Nanomaterials (II) -- 5.1 Sensing Mechanisms and Techniques -- 5.1.1 Förster Resonance Energy Transfer (FRET) -- 5.1.2 Time-Resolved Fluorescence (TRF) -- 5.1.3 Flow Cytometry -- 5.2 Bioanalytical and Biomedical Application -- 5.2.1 Quantum Dot -- 5.2.2 UCNPs-Based Analysis -- 5.2.3 Europium-Based Analysis -- 5.3 Bioimaging -- 5.3.1 QD-Based Bioimaging -- 5.3.2 UCNPs-Based Imaging -- 5.3.3 Europium-Activated Luminescent Nanoprobes -- 5.3.4 NIR-II Imaging -- 5.4 Therapeutics Cooperated with Luminescent Nanoparticles -- 5.4.1 Drug Delivery -- 5.4.2 Photothermal Therapy -- 5.4.3 Photodynamic Therapy -- 5.5 Conclusions and Outlook -- References -- 6: Plasmonic Nanoparticles: Basics to Applications (I) -- 6.1 Introduction -- 6.2 Synthesis of Metal Nanoparticles -- 6.2.1 General Information -- 6.2.2 Citrate Reduction Method -- 6.2.3 Reverse Micelle Method -- 6.2.4 Polyol Method. 6.3 Property of Metal Nanoparticles -- 6.3.1 General Information -- 6.3.2 Localized Surface Plasmon Resonance -- 6.3.3 Effects of Size, Shape, Composition, and Environment -- 6.3.3.1 Size-Dependent Optical Property -- 6.3.3.2 Shape-Dependent Optical Property -- 6.3.3.3 Composition-Dependent Optical Property -- 6.3.3.4 Effect of Interactions with Mediums and Between NPs -- 6.4 Metal-Enhanced Process -- 6.4.1 Surface-Enhanced Fluorescence (SEF) -- 6.4.2 Surface-Enhanced Raman Scattering (SERS) -- 6.4.3 Plasmon Resonance Energy Transfer (PRET) -- 6.5 Basics for Biomedical Application of Metal Nanoparticles -- Bibliography -- 7: Plasmonic Nanoparticles: Advanced Researches (II) -- 7.1 Advanced Synthetic Researches -- 7.2 Recent Advanced Application in Biomedical Research -- 7.2.1 In Vitro Biosensors -- 7.2.2 Intracellular Detection and Ex Vivo/In Vivo Imaging -- 7.2.3 Therapeutic Applications -- 7.3 Conclusions and Outlook -- Bibliography -- 8: Magnetic Nanoparticles -- 8.1 Introduction -- 8.2 Synthesis of Magnetic Nanoparticles -- 8.2.1 General Information -- 8.2.2 Coprecipitation -- 8.2.3 Thermal Decomposition -- 8.2.3.1 New Type of Thermal Decomposition -- 8.2.4 Microemulsion -- 8.3 Physical Properties of Magnetic Nanoparticles -- 8.3.1 Units of Magnetic Property -- 8.3.2 Hysteresis Effect, Coercivity, and Remanence -- 8.3.3 Domain Theory -- 8.3.4 Magnetic Properties of Nanoparticles -- 8.3.5 Curie Temperature -- 8.4 Magnetism -- 8.4.1 Classification of Magnetism -- 8.4.2 Ferromagnetism -- 8.4.3 Ferrimagnetism -- 8.4.4 Superparamagnetism -- 8.5 Current Trends of Magnetic Nanoparticles -- 8.5.1 Separation/Purification of Biomolecules -- 8.5.2 Hyperthermia -- 8.5.3 Drug Delivery -- 8.5.4 Magnetic Resonance Imaging (MRI) -- 8.5.5 Multifunctional Nanocomposites Possessing Magnetic Property. 8.5.5.1 Multimodal Imaging -- 8.5.5.2 Theragnosis/Theragnostics -- Bibliography -- 9: Lithography Technology for Micro- and Nanofabrication -- 9.1 Introduction -- 9.2 Conventional Lithography -- 9.2.1 Photolithography -- 9.2.2 High-Energy Beam Lithography -- 9.2.2.1 Electron Beam Lithography -- 9.2.2.2 Focused Ion Beam Lithography -- 9.3 Unconventional Lithography -- 9.3.1 Nanoimprint Lithography (NIL) -- 9.3.1.1 Thermal NIL -- 9.3.1.2 UV-NIL -- 9.3.2 Deformation of Material-Based Lithography -- 9.3.2.1 Wrinkling -- 9.3.2.2 Cracking -- 9.3.2.3 Collapsing -- 9.3.3 Colloidal Lithography -- 9.3.3.1 Self-Assembly of Colloidal Particles -- 9.3.3.2 Colloidal Particle-Based Patterning -- 9.4 Overlook and Conclusions -- Bibliography -- 10: Bioapplications of Nanomaterials -- 10.1 Overview -- 10.2 Pharmaceutical Applications -- 10.2.1 Drug Delivery and Targeting Strategies -- 10.3 Biosensing and Biochips -- 10.3.1 SERS-Based Intracellular Biosensing -- 10.3.1.1 Gaseous Sensing -- 10.3.1.2 pH Sensing -- 10.3.1.3 Reactive Oxygen Species (ROS) -- 10.3.1.4 Redox Potential Sensing -- 10.3.2 Detection of Biomolecules by SERS -- 10.3.2.1 Proteins -- 10.3.2.2 DNA -- 10.3.2.3 Metabolite -- 10.3.2.4 Pathogens -- 10.4 Gene Delivery -- 10.5 Bioimaging -- 10.5.1 SERS-Based Cellular Imaging -- 10.5.2 Imaging of Cell Surface Species -- 10.5.3 Endocytic Pathway -- 10.5.4 Cell Cycle and Apoptotic Process -- 10.5.5 Cell Secretion -- 10.6 Cancer Diagnostics and Therapeutics -- Bibliography -- 11: Carbon Nanomaterials for Biomedical Application -- 11.1 Introduction -- 11.2 Properties of Carbon-Based Nanomaterials -- 11.2.1 Graphite and Fullerene -- 11.2.2 Carbon Nanotube -- 11.2.3 Graphene and Derivatives -- 11.3 Surface Functionalization of Carbon Nanomaterials -- 11.3.1 Noncovalent Surface Chemistry. 11.3.2 Covalent Surface Chemistry -- 11.4 Carbon Nanomaterials for Biological Applications -- 11.4.1 In Vitro Sensing Elements and Diagnostics -- 11.4.2 Graphene Nanopore and Graphene Liquid Cell -- 11.4.3 Functional 3D Carbon Nanomaterials -- 11.4.4 Photothermal Therapy -- 11.4.5 Tissue Engineering Using Carbon Materials -- 11.5 Conclusions and Outlook -- References -- 12: Optical and Electron Microscopy for Analysis of Nanomaterials -- 12.1 Introduction -- 12.2 Optical Microscopy -- 12.3 Electron Microscopy (EM) -- 12.3.1 Transmission Electron Microscopy (TEM) -- 12.3.2 Scanning Electron Microscopy (SEM) -- 12.4 Scanning Probe Microscopy (SPM) -- 12.4.1 Scanning Tunneling Microscopy (STM) -- 12.4.2 Atomic Force Microscopy (AFM) -- 12.4.3 Near-Field Scanning Optical Microscopy (NSOM) -- 12.5 Outlook and Summary -- References -- 13: Conclusion and Perspective -- 13.1 Conclusion -- 13.2 Perspective. |
Record Nr. | UNINA-9910484132203321 |
Singapore : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Silver Nano/microparticles: Modification and Applications |
Autore | Rho Won Yeop |
Pubbl/distr/stampa | MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
Descrizione fisica | 1 electronic resource (206 p.) |
Soggetto non controllato |
membrane
bacteria cyclodextrin silver nanomaterial drug delivery transparent conductive film cytocompatibility surface free energy administration route sericin biosensor uptake substrate modification silver ion AgNPs mechanical properties cell culture titanium alloy Au-Ag alloy silver shell moderate sintering wound dressing polymer nanocomposite DNA damage surface morphology reactive oxygen species (ROS) flexible and printed electronics plants reactive oxygen species mechanism optoelectronics cytotoxicity photonic sintering synthesis silver nanoparticle doxorubicin (DOX) food packaging SERS detection nanomedicine antimicrobial activity nanogaps TNFR1 silica template silver ions release diagnostics phytotoxicity polydopamine silver nanoparticles tumor necrosis factor protective agent characterization |
ISBN | 3-03921-178-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | Silver Nano/microparticles |
Record Nr. | UNINA-9910346668503321 |
Rho Won Yeop | ||
MDPI - Multidisciplinary Digital Publishing Institute, 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|