top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems [[electronic resource] ] : AIME 2019 International Workshops, KR4HC/ProHealth and TEAAM, Poznan, Poland, June 26–29, 2019, Revised Selected Papers / / edited by Mar Marcos, Jose M. Juarez, Richard Lenz, Grzegorz J. Nalepa, Slawomir Nowaczyk, Mor Peleg, Jerzy Stefanowski, Gregor Stiglic
Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems [[electronic resource] ] : AIME 2019 International Workshops, KR4HC/ProHealth and TEAAM, Poznan, Poland, June 26–29, 2019, Revised Selected Papers / / edited by Mar Marcos, Jose M. Juarez, Richard Lenz, Grzegorz J. Nalepa, Slawomir Nowaczyk, Mor Peleg, Jerzy Stefanowski, Gregor Stiglic
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XII, 175 p. 56 illus., 42 illus. in color.)
Disciplina 610.285
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Optical data processing
Computer organization
Computers
Education—Data processing
Application software
Artificial Intelligence
Image Processing and Computer Vision
Computer Systems Organization and Communication Networks
Information Systems and Communication Service
Computers and Education
Computer Applications
ISBN 3-030-37446-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto KR4HC/ProHealth - Joint Workshop on Knowledge Representation for Health Care and Process-Oriented Information Systems in Health Care -- A practical exercise on re-engineering clinical guideline models using different representation languages -- A method for goal-oriented guideline modeling in PROforma and ist preliminary evaluation -- Differential diagnosis of bacterial and viral meningitis using Dominance-Based Rough Set Approach -- Modelling ICU Patients to Improve Care Requirements and Outcome Prediction of Acute Respiratory Distress Syndrome: A Supervised Learning Approach -- Deep learning for haemodialysis time series classification -- TEAAM - Workshop on Transparent, Explainable and Affective AI in Medical Systems -- Towards Understanding ICU Treatments using Patient Health Trajectories -- An Explainable Approach of Inferring Potential Medication Effects from Social Media Data -- Exploring antimicrobial resistance prediction using post-hoc interpretable methods -- Local vs. Global Interpretability of Machine Learning Models in Type 2 Diabetes Mellitus Screening -- A Computational Framework towards Medical Image Explanation -- A Computational Framework for Interpretable Anomaly Detection and Classification of Multivariate Time Series with Application to Human Gait Data Analysis -- Self-organizing maps using acoustic features for prediction of state change in bipolar disorder -- Explainable machine learning for modeling of early postoperative mortality in lung cancer. .
Record Nr. UNISA-996466422303316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems : AIME 2019 International Workshops, KR4HC/ProHealth and TEAAM, Poznan, Poland, June 26–29, 2019, Revised Selected Papers / / edited by Mar Marcos, Jose M. Juarez, Richard Lenz, Grzegorz J. Nalepa, Slawomir Nowaczyk, Mor Peleg, Jerzy Stefanowski, Gregor Stiglic
Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems : AIME 2019 International Workshops, KR4HC/ProHealth and TEAAM, Poznan, Poland, June 26–29, 2019, Revised Selected Papers / / edited by Mar Marcos, Jose M. Juarez, Richard Lenz, Grzegorz J. Nalepa, Slawomir Nowaczyk, Mor Peleg, Jerzy Stefanowski, Gregor Stiglic
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (XII, 175 p. 56 illus., 42 illus. in color.)
Disciplina 610.285
006.3
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Artificial intelligence
Optical data processing
Computer organization
Computers
Education—Data processing
Application software
Artificial Intelligence
Image Processing and Computer Vision
Computer Systems Organization and Communication Networks
Information Systems and Communication Service
Computers and Education
Computer Applications
ISBN 3-030-37446-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto KR4HC/ProHealth - Joint Workshop on Knowledge Representation for Health Care and Process-Oriented Information Systems in Health Care -- A practical exercise on re-engineering clinical guideline models using different representation languages -- A method for goal-oriented guideline modeling in PROforma and ist preliminary evaluation -- Differential diagnosis of bacterial and viral meningitis using Dominance-Based Rough Set Approach -- Modelling ICU Patients to Improve Care Requirements and Outcome Prediction of Acute Respiratory Distress Syndrome: A Supervised Learning Approach -- Deep learning for haemodialysis time series classification -- TEAAM - Workshop on Transparent, Explainable and Affective AI in Medical Systems -- Towards Understanding ICU Treatments using Patient Health Trajectories -- An Explainable Approach of Inferring Potential Medication Effects from Social Media Data -- Exploring antimicrobial resistance prediction using post-hoc interpretable methods -- Local vs. Global Interpretability of Machine Learning Models in Type 2 Diabetes Mellitus Screening -- A Computational Framework towards Medical Image Explanation -- A Computational Framework for Interpretable Anomaly Detection and Classification of Multivariate Time Series with Application to Human Gait Data Analysis -- Self-organizing maps using acoustic features for prediction of state change in bipolar disorder -- Explainable machine learning for modeling of early postoperative mortality in lung cancer. .
Record Nr. UNINA-9910370257703321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui