top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Biotechnology for sustainable environment / / Sanket J. Joshi, Arvind Deshmukh and Hemen Sarma (editors)
Biotechnology for sustainable environment / / Sanket J. Joshi, Arvind Deshmukh and Hemen Sarma (editors)
Pubbl/distr/stampa Gateway East, Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (417 pages)
Disciplina 628.5
Soggetto topico Bioremediation
Bioremediació
Soggetto genere / forma Llibres electrònics
ISBN 981-16-1955-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- About the Editors -- 1: Environmental Biotechnology: Toward a Sustainable Future -- 1.1 Introduction to Environmental Biotechnology -- 1.2 Worldwide Environmental Problems -- 1.2.1 Environmental Contamination -- 1.2.2 Global Warming -- 1.2.3 The Depletion of the Ozone Layer -- 1.2.4 Acid Rain -- 1.2.5 Depletion of Natural Resources -- 1.2.6 Overpopulation -- 1.2.7 Waste Disposal -- 1.2.8 Deforestation -- 1.2.9 Loss of Biodiversity -- 1.3 Bioremediation -- 1.3.1 Nano-Bioremediation Technologies for Sustainable Environment -- 1.4 Biotechnology to Control and Clear Air Pollution -- 1.4.1 Control Methods of Odor and Volatile Organic Compounds (VOCs) -- 1.5 Soil Management and Contamination -- 1.5.1 Sources of Soil Pollution -- 1.5.2 The Available Options for the Integrated Management of Contaminated Soils -- 1.5.2.1 Controlling Pollutant Entry into the Soil -- 1.5.2.2 Use of Physical and Chemical Means to Decontaminate Soil -- 1.5.2.3 Soil Contaminants Bioremediation -- 1.6 Effective Treatment of Wastewater -- 1.6.1 Choice of Methods for Wastewater Treatment -- 1.6.1.1 Small-Scale Wastewater Treatment -- 1.6.1.2 Large-Scale Wastewater Treatment -- 1.6.2 Biological Approach to Wastewater Treatment -- 1.7 Biotechnology Application to Industrial Sustainability -- 1.7.1 Fine Chemicals -- 1.7.2 Intermediate Chemicals -- 1.7.3 Polymers -- 1.7.4 Food Processing -- 1.7.5 Fiber Processing -- 1.7.6 Biotechnology Can Create a Source of Renewable Energy -- 1.8 Microorganisms in the Environment -- 1.8.1 Bio-Inputs for Global Sustainability -- 1.8.2 Antibiotics Are Used to Protect Plants -- 1.9 Further Biotechnological Aspects -- 1.9.1 Eco-Friendly Fuels -- 1.9.1.1 Biofuel Sources -- 1.10 Biopesticides -- 1.10.1 Microbial Pesticides -- 1.10.2 Biochemical Pesticides -- 1.10.2.1 Benefits of Biochemical Pesticides.
1.10.2.2 Limitations of Biochemical Pesticides -- 1.11 Biofertilizers -- 1.11.1 Microbial Biofertilizers -- 1.12 Bioleaching -- 1.12.1 Bioleaching Uses -- 1.12.2 Mechanism of Bioleaching -- 1.13 Bioplastic -- 1.13.1 Merits of Bioplastics Over Conventional Plastics -- 1.13.1.1 Biodegradable -- 1.13.1.2 Eco-Friendly -- 1.14 Conclusion -- References -- 2: The Mystery of Methanogenic Archaea for Sustainable Development of Environment -- 2.1 Introduction -- 2.2 Microbiological Facets of Methanogens -- 2.2.1 Archaebacteria -- 2.2.2 Definitive Characteristics of Methanogenic Archaea -- 2.2.3 Anaerobiosis -- 2.2.4 A Diminutive Historical View of Methanogenic Archaea -- 2.2.5 Habitat -- 2.2.6 Methanogenic Phylogeny -- 2.2.6.1 Methanobacteriales -- 2.2.6.2 Methanococcales -- 2.2.6.3 Methanomicrobiales -- 2.2.6.4 Methanosarcinales -- 2.2.6.5 Methanopyrales -- 2.2.6.6 Methanocellales -- 2.2.6.7 Methanoplasmatales (Thermoplasmatales) -- 2.3 Morphological, Ecological, and Biological View of Methanogenic Archaea -- 2.3.1 Cell Shape, Motility, and Gas Vesicles -- 2.3.2 Gram Reaction -- 2.3.3 Methanogens as Syntrophs -- 2.3.4 Cell Envelope, Lipid Composition, and Antibiotic Resistance -- 2.4 Growth Parameters -- 2.4.1 Temperature, pH, Pressure, and Salinity -- 2.4.2 Substrate Range -- 2.4.2.1 Acetoclastic Methanogens -- 2.4.2.2 Hydrogenotrophic Methanogens -- 2.4.2.3 Methylotrophic Methanogens -- 2.5 Bioeconomy-Based Technologies for Environmental Sustainability -- 2.5.1 Bio-Based Carbon Dioxide Capture, Sequestration, Utilization, and Conversion (CCSUC) Technology -- 2.5.2 Anaerobic Digestion -- 2.5.2.1 Microbial Food Chains of Anaerobic Digestion -- 2.5.2.2 Methanogenesis -- 2.5.3 Energy Pool: Biofuel -- 2.5.4 MEOR: A Combining Hand of Biodegradation and Biotransformation -- 2.5.5 Microbially Enhanced Coal Bed Methane (MECoM) -- 2.5.6 Electromethanogenesis.
2.5.7 Corrosion Prevention -- 2.5.8 Waste Management -- 2.5.9 Bio-Hydrogen Production -- 2.5.10 Other Active Applications -- 2.6 Conclusion and Future Perspectives -- References -- 3: Chitosan Coating Biotechnology for Sustainable Environment -- 3.1 Introduction -- 3.2 Coating Technology -- 3.3 Chitosan -- 3.4 Chitosan-Based Coatings -- 3.4.1 Chitosan-Based Polyester (CHI-PE) -- 3.4.1.1 Synthesis -- 3.4.1.2 Fourier Transform Infrared Spectroscopy (FTIR) -- 3.4.1.3 X-Ray Diffraction (XRD) -- 3.4.1.4 Scanning Electron Microscope (SEM) -- 3.4.1.5 Swelling Performance -- 3.4.1.6 Antibacterial Activity -- 3.4.2 Chitosan-Based Polyurethane (CHI-PU) -- 3.4.2.1 Synthesis -- 3.4.2.2 Fourier Transform Infrared Spectroscopy (FTIR) -- 3.4.2.3 X-Ray Diffraction (XRD) -- 3.4.2.4 Scanning Electron Microscope (SEM) -- 3.4.2.5 Wettability -- 3.4.2.6 Antibacterial Activity -- 3.4.3 Chitosan-Based Polyvinyl Acetate (CHI-PVA) -- 3.4.3.1 Synthesis -- 3.4.3.2 Fourier Transform Infrared Spectroscopy (FTIR) -- 3.4.3.3 X-Ray Diffraction (XRD) -- 3.4.3.4 Morphology -- 3.4.3.5 Swelling Performance -- 3.4.3.6 Conductivity -- 3.4.4 Chitosan-Based Carboxymethyl Cellulose (CHI-CMC) -- 3.4.4.1 Synthesis -- 3.4.4.2 Fourier Transform Infrared Spectroscopy (FTIR) -- 3.4.4.3 X-Ray Diffraction (XRD) -- 3.4.4.4 Swelling Performance -- 3.4.4.5 Antimicrobial Activity -- 3.5 Summary -- 3.6 Future Perspectives -- References -- 4: Bacterial Biodegradation of Bisphenol A (BPA) -- 4.1 Introduction -- 4.2 Xenobiotic Metabolism and Biodegradation -- 4.2.1 Bisphenol A -- 4.2.1.1 Production and Uses of BPA -- 4.2.2 Hazards of BPA -- 4.2.3 Microorganisms Involved in BPA Degradation -- 4.2.4 BPA Degradation Pathway and Intermediates -- 4.3 Case Study -- 4.3.1 Determination of Enzyme Activity -- 4.3.2 Observations -- 4.3.3 Bisphenol A Degradation -- 4.4 Conclusion and Future Prospects -- References.
5: Microbial Degradation of Marine Plastics: Current State and Future Prospects -- 5.1 Introduction -- 5.1.1 Plastics: The Marvel and The Global Problem -- 5.2 The Oceans Plastic Problem -- 5.2.1 Impacts of Plastic on Marine Life -- 5.3 Plastic Degradation -- 5.3.1 Abiotic Factors Influencing the Degradation of Plastic -- 5.3.2 The Potential for Microbially Mediated Plastic Degradation -- 5.4 Methods and Techniques Applied in the Assessment of Polymer Biodegradation -- 5.4.1 Methods to Evaluate Biodegradation -- 5.4.2 Colonization of Prokaryotes and Eukaryotes on Marine Plastic -- 5.4.2.1 Prokaryotic Colonizers on Marine Plastic -- 5.4.2.2 Eukaryotes as Plastic Colonizers and Degraders -- 5.5 Enzymatic Potential of Microbes -- 5.5.1 General Considerations -- 5.5.2 Extracellular Biodegradation -- 5.5.3 Intracellular Biodegradation -- 5.6 Valorization and Applications -- References -- 6: Mechanism and Pretreatment Effect of Fungal Biomass on the Removal of Heavy Metals -- 6.1 Introduction -- 6.2 Natural and Anthropogenic Sources of Heavy Metals -- 6.3 Passive and Active Biosorption -- 6.4 Fungal Biomass Generated from the Fermentation Industries -- 6.5 Fungal Cell Wall Structure -- 6.5.1 Advantages of Fungi as Biosorbents -- 6.5.2 Fungi as Biosorbents -- 6.6 Factors Affecting Biosorption Process -- 6.7 Effect of Pretreatment of Fungal Biomass on the Removal of Heavy Metals -- 6.8 Physical and Chemical Methods of Pretreatment of Fungal Biomass for the Removal of Heavy Metals -- 6.8.1 Physical Methods -- 6.8.2 Pretreatment Using Acids (Das et al. 2007) -- 6.8.3 Pretreatment Using Alkali (Das et al. 2007) -- 6.8.4 Pretreatment Using Organic Solvents (Das et al. 2007) -- 6.9 Mechanism of the Removal of Heavy Metals by the Fungal Biomass -- 6.9.1 Presence of Functional Groups on the Fungal Biomass -- 6.9.2 Direct Adherence on the Fungal Cell Wall.
6.9.3 Functional Group on Chitosan -- 6.10 Immobilization of Fungal Biomass for Biosorption -- 6.11 Conclusions -- 6.12 Future Prospects -- References -- 7: Metal Bioremediation, Mechanisms, Kinetics and Role of Marine Bacteria in the Bioremediation Technology -- 7.1 Introduction -- 7.2 Heavy Metals and Their Sources -- 7.3 Mechanisms of Metal Bioremediation -- 7.3.1 Solubilization -- 7.3.1.1 Bioleaching -- 7.3.2 Immobilization -- 7.3.2.1 Bioaccumulation -- 7.3.2.2 Biosorption -- 7.3.3 Mechanisms of Biosorption -- 7.3.3.1 Cell Surface Adsorption -- 7.3.3.2 Extracellular Accumulation -- 7.3.3.3 Intracellular Accumulation -- 7.3.3.4 Precipitation -- 7.3.3.5 Transformation of Metals -- 7.4 Marine Bacteria -- 7.5 Marine Bacteria in Biosorption of Metals -- 7.6 Use of Genetically Modified Microorganisms in Biosorption -- 7.7 Factors Affecting Biosorption -- 7.8 Biosorption Isotherm Models -- 7.9 Biosorption Kinetics -- 7.10 Analytical Techniques to Analyse Biosorption Process -- 7.11 Living and Non-living Systems for Metal Sorption -- 7.12 Desorption and Metal Recovery -- 7.13 Future Work -- 7.14 Conclusion -- References -- 8: Biofilm-Associated Metal Bioremediation -- 8.1 Introduction -- 8.2 Heavy Metals and Their Toxicity -- 8.3 Biofilm: Composition and Structure -- 8.3.1 Composition -- 8.3.2 EPS Synthesis -- 8.3.3 Biofilm Structure and Its Formation -- 8.4 Biofilm-Producing Microbiota -- 8.4.1 Bacteria in Bioremediation of Heavy Metals -- 8.4.2 Fungi in Bioremediation of Heavy Metals: Mycoremediation -- 8.4.3 Algae in Bioremediation of Heavy Metals: Phycoremediation -- 8.5 Metal-Microbe Interaction and EPS-Mediated Strategies for Remediation -- 8.5.1 EPS-Mediated Metal Biosorption: Mechanism, Advantages, and Disadvantages -- 8.5.2 Strategies of Heavy-Metal and EPS Interaction and Its Remediation -- 8.5.3 Types of EPS and Its Remediation Strategies.
8.5.3.1 Dead Biomass EPS.
Record Nr. UNINA-9910488696003321
Gateway East, Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Status and future challenges for non-conventional energy sources . Volume 2 / / edited by Sanket J. Joshi, [and three others]
Status and future challenges for non-conventional energy sources . Volume 2 / / edited by Sanket J. Joshi, [and three others]
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (344 pages)
Disciplina 910.5
Collana Clean Energy Production Technologies
Soggetto topico Fossil fuels
ISBN 981-16-4509-4
981-16-4508-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- About the Editors -- Chapter 1: Current State of the Art of Lignocellulosic Biomass: Future Biofuels -- 1.1 Introduction -- 1.2 What Is Lignocellulosic Biomass? -- 1.3 Structure of Lignocellulosic Biomass -- 1.3.1 Cellulose -- 1.3.2 Hemicelluloses -- 1.3.3 Lignin -- 1.4 Classification of Pretreatment Methods Used -- 1.4.1 Physical Pretreatment Methods -- 1.4.2 Physicochemical Pretreatment Methods -- 1.4.3 Chemical Pretreatment Methods -- 1.4.4 Biological Pretreatment Methods -- 1.4.5 Electrical Pretreatment Methods -- 1.4.6 Other Delignification Treatment Methods -- 1.4.6.1 Hot Water Pretreatments -- 1.4.6.2 Enzymatic Delignification -- 1.4.6.3 Ozonation -- 1.4.6.4 Biological Treatments -- 1.5 New Strategies for Future Biofuels -- References -- Chapter 2: Cellulosic Biorefinery: Concepts, Potential, and Challenges -- 2.1 Introduction -- 2.2 Biopolymer Fraction of Lignocellulosic Biomass: Cellulose, Hemicellulose, and Lignin -- 2.3 Lignocellulosic Substrates -- 2.3.1 First Generation (Food Crops) -- 2.3.2 Second Generation (Nonfood Crops and Lignocellulosic Wastes) -- 2.4 Production for Ethanol from Lignocellulosic Biomass -- 2.4.1 Pretreatment -- 2.4.2 Acid Hydrolysis -- 2.4.3 Enzymatic Hydrolysis -- 2.4.4 Bottlenecks of Pretreatment Strategies and Prospects -- 2.4.5 Hydrolysis and the Fermentation of Lignocellulosic Biomass -- 2.5 Case Study: Sugarcane Bagasse as a Potential Feedstock for Biorefineries -- 2.6 Opportunities and Challenges in the Lignocellulosic Biorefining -- 2.7 Conclusion -- References -- Chapter 3: Biorefinery Technology for Cellulosic Biofuel Production -- 3.1 Introduction -- 3.2 Biorefinery Concept -- 3.2.1 Background -- 3.3 Types of Biorefinery -- 3.3.1 Entire Crop Biorefinery -- 3.3.2 Green Biorefinery -- 3.3.3 Lignocellulose Feedstock (LCF) Biorefinery -- 3.3.4 Incorporated Biorefinery.
3.4 Major Platform Chemical Substances in Present-Day Fossil Refinery -- 3.4.1 Lignocellulosic Biomass as Unprocessed Materials -- 3.4.1.1 Biomass vs. Fossil Resources -- 3.4.1.2 Biomass Processing in a Biorefinery -- 3.5 Biorefineries: Scenarios and Challenges -- 3.5.1 Lignocellulosic Biomass Through Aliphatic and Aromatic Stage Compound Creation -- 3.5.2 Green Biomass as Crude Material for Proteins and Chemical Synthetics -- 3.5.3 Industrial Outlook -- 3.6 Current Status -- 3.6.1 The Role of Biorefinery in Industry -- 3.7 Biomass-Biorefinery-Bioeconomy -- 3.8 Biorefinery Concept: Future Prospects -- 3.9 Conclusion -- References -- Chapter 4: Life Cycle Assessment of Algal Biofuels -- 4.1 Introduction to Microalgae -- 4.1.1 Algae Cultivation -- 4.1.2 Algal Biomass to Biofuel Conversion Technologies -- 4.2 Life Cycle Assessment -- 4.2.1 System Boundary -- 4.2.2 Functional Unit -- 4.2.3 Impact Categories -- 4.3 LCA of Algal Biofuels -- 4.3.1 Effect of Type of Algae -- 4.3.2 Effects of Pretreatment -- 4.3.3 Effect of Infrastructure -- 4.3.4 Effect of the Functional Unit -- 4.3.5 Effect of co-Products -- 4.3.6 Ponds Vs. PBR -- 4.3.7 Consequential LCA -- 4.3.8 Uncertainty Analysis -- 4.4 Specialized LCAs -- 4.4.1 Spatially Explicit Life Cycle Assessment (SELCA) -- 4.4.2 Life Cycle Climate Change Impacts of Land Use and Albedo Change -- 4.4.3 Time-Dependent LCA -- 4.4.4 Harmonized LCA -- 4.4.5 Integration of Resilience -- 4.4.6 Social LCA -- 4.5 Conclusions -- References -- Chapter 5: Biodiesel: Features, Potential Hurdles, and Future Direction -- 5.1 Introduction -- 5.2 Existing Feedstocks for Biodiesel Production -- 5.3 Production of Biodiesel from Vegetable Oils -- 5.3.1 Latest/Current Technologies for Biodiesel Production -- 5.3.1.1 Microreactor Systems for Biodiesel Synthesis -- Microtube Reactors -- Membrane Microreactor -- Microstructured Reactor.
Oscillatory Flow Reactor -- 5.4 Types of Transesterification -- 5.4.1 Catalytic Transesterification -- 5.4.2 Catalyst for Biodiesel Synthesis -- 5.4.2.1 Homogeneous Catalyst -- Acid Catalyst -- Base Catalyst -- 5.4.2.2 Heterogeneous Catalyst -- 5.4.3 Enzymatic Catalyst Transesterification -- 5.4.4 Noncatalytic Transesterification -- 5.5 Factors Affecting Biodiesel Synthesis -- 5.6 Potential Hurdles -- 5.7 Future of Biodiesels -- 5.8 Conclusions -- References -- Chapter 6: Solid-State Fermentation: An Alternative Approach to Produce Fungal Lipids as Biodiesel Feedstock -- 6.1 Biomass and Biodiesel -- 6.2 Single Cell Oil of Fungi as Biodiesel Feedstock -- 6.3 SCO Production from Renewable Carbon -- 6.4 Solid-State Fermentation for SCO Production from Fungi -- 6.5 Production of Lipases by SSF for Biodiesel Application -- 6.6 Downstream Processing for Lipid Recovery from Fermented Solids in SSF -- 6.7 Conclusion -- References -- Chapter 7: Metabolic Engineering Approach for Advanced Microbial Fuel Production Using Escherichia coli -- 7.1 Introduction -- 7.2 Microbial Fatty Acid Biosynthesis and Metabolic Engineering in E. coli -- 7.2.1 Enzymes and Metabolic Strategies for Enhanced Fatty Acid Production -- 7.2.1.1 Acetyl-CoA Carboxylase -- 7.2.1.2 Malonly-CoA:ACP Transacylase -- 7.2.1.3 3-Ketoacyl-ACP Synthase I, II and III -- 7.2.1.4 3-Ketoacyl-ACP Reductase -- 7.2.1.5 3-Hydroxyacyl-ACP Dehydrase -- 7.2.1.6 Enoyl-ACP Reductase -- 7.2.1.7 ACP, ACP Synthase and ACP Phosphodiesterase -- 7.3 Fatty Acid Degradation in E. coli -- 7.4 Transcriptional Regulation of Fatty Acid Biosynthesis and Degradation in E. coli -- 7.5 Next-Generation Biofuel Production Using Metabolic Engineering Approach -- 7.5.1 Fermentative Pathways for Short-Chain Alcohol Production -- 7.5.2 2-Keto Acid Pathways for Short-Chain and Medium-Chain Alcohols.
7.5.3 Fuels from Isoprenoid Pathways -- 7.6 Conclusion -- References -- Chapter 8: Microbial Fuel Cells (MFC) and Its Prospects on Bioelectricity Potential -- 8.1 Introduction -- 8.2 Concept Invention -- 8.3 Materials Used to Construct MFC -- 8.3.1 Cathode -- 8.3.2 Anode -- 8.3.3 Proton-Exchange Membrane (PEM) -- 8.4 Classification of MFCs -- 8.4.1 Mediator MFCs -- 8.4.2 Mediator-Less MFCs -- 8.5 Design of MFC -- 8.5.1 Single Chambered -- 8.5.2 Double-Chambered MFCs -- 8.5.3 Other Models -- 8.6 Microbes Used for MFC -- 8.6.1 Bacteria -- 8.6.2 Fungi -- 8.6.3 Yeast -- 8.6.4 Algae -- 8.7 Factors Influencing MFC -- 8.7.1 pH -- 8.7.2 Temperature -- 8.7.3 Electrode Material -- 8.7.4 Mediators -- 8.7.5 Proton-Exchange Membrane (PEM) -- 8.8 Application -- 8.8.1 Biosensor -- 8.8.2 Biohydrogen -- 8.8.3 Agriculture -- 8.8.4 Wastewater Treatment -- 8.9 Recent MFC Design -- 8.9.1 Biofilm -- 8.9.2 In Silico Method -- 8.9.3 Self-Rechargeable Device -- 8.10 Future Perspective -- References -- Chapter 9: Biocatalysis of Biofuel Cells: Exploring the Intrinsic Bioelectrochemistry -- 9.1 Introduction -- 9.2 The Essentials of BFCs -- 9.2.1 Biocatalysts -- 9.2.1.1 Whole-Cell Biocatalysts -- 9.2.1.2 Enzymatic Biocatalysts -- 9.2.1.3 Organelle-Based Biocatalysts -- 9.2.2 Substrates -- 9.2.3 Electrodes -- 9.2.3.1 Anode -- 9.2.3.2 Cathode -- 9.2.4 Membrane -- 9.3 The Mechanisms Behind Bioelectrogenesis -- 9.3.1 Electron Transfer: Types -- 9.3.1.1 Direct Electron Transfer (DET) -- 9.3.1.2 Indirect Electron Transfer -- 9.3.2 Extra Electron Transfer Pathways: At the Molecular Level -- 9.3.2.1 Mtr Pathway: S. oneidensis -- 9.3.2.2 Branched OMC System: G. sulfurreducens -- 9.3.3 Resistances -- 9.4 Some Major BFC-Coupled Biocatalysis Pathways -- 9.4.1 Glucose Pathway and Energy Calculations in Saccharomyces cerevisiae -- 9.4.2 Plant-Microbe Symbiotic Association P-MFCs.
9.4.3 Wastewater Treatment and Recalcitrant Pollutant Degradation -- 9.4.4 Metal Recovery -- 9.5 Recent Developments and Prospective Paths -- 9.5.1 Genetic Modification and Applying Synthetic Biology -- 9.5.2 Chemical Treatment -- 9.6 Conclusion -- References -- Chapter 10: Bioelectric Fuel Cells: Recent Trends to Manage the Crisis on Resources for Conventional Energy -- 10.1 Bioelectric Fuel Cell -- 10.1.1 Introduction -- 10.1.2 Working -- 10.1.2.1 Acetate Oxidation -- 10.1.3 Chamber Mechanism -- 10.1.4 Classification of Microbial Fuel Cell -- 10.1.5 Requirements -- 10.1.5.1 Anode Chamber -- 10.1.5.2 Cathode Chamber -- 10.1.5.3 Membrane System -- 10.1.6 Design and Construction -- 10.1.6.1 Designs -- 10.1.6.2 Single-Chamber MFC -- 10.1.6.3 Double-Chamber Designs -- 10.1.6.4 Vertical or Up-Flow Chamber MFCs -- 10.1.6.5 Stacked Designs -- 10.1.7 Drawbacks of Each Design -- 10.2 Non-hazardous Solid Waste -- 10.2.1 Categories and Sources -- 10.2.2 Technical Disposal -- 10.2.3 Advantages and Disadvantages -- 10.3 Biological Systems -- 10.3.1 Classification of Biological Systems -- 10.3.2 Microbes -- 10.3.2.1 Bacteria -- 10.3.2.2 Fungi -- 10.3.2.3 Yeast -- 10.3.3 Algae -- 10.3.4 Plants -- 10.4 Biomass -- 10.4.1 Classification -- 10.4.2 Energy Values of Biomass -- 10.4.2.1 Agricultural Biomass -- 10.4.2.2 Forest Biomass -- 10.4.2.3 Animal Residues (or) Biomass -- 10.4.2.4 Human Waste -- 10.5 Future Perspective -- References -- Chapter 11: Bioethanol: Substrates, Current Status, and Challenges -- 11.1 Introduction -- 11.2 Bioethanol Generations -- 11.2.1 First-Generation Ethanol -- 11.2.1.1 Feedstock and Production Technology -- Sugarcane -- Sugar Beet -- Sweet Sorghum -- Corn -- Wheat -- Cassava -- Ethanol from Other Starchy Materials -- 11.2.1.2 Current Status and Challenges -- 11.2.2 Second-Generation Ethanol -- 11.2.2.1 Production Technology.
11.2.2.2 Feedstock.
Record Nr. UNINA-9910743238303321
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Status and future challenges for non-conventional energy sources . Volume 1 / / Sanket J. Joshi [and three others], editors
Status and future challenges for non-conventional energy sources . Volume 1 / / Sanket J. Joshi [and three others], editors
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (336 pages)
Disciplina 333.79
Collana Clean energy production technologies
Soggetto topico Power resources
Bioenergetics
Environmental chemistry
ISBN 981-16-4505-1
981-16-4504-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- About the Editors -- Chapter 1: Ocean, Tidal and Wave Energy: Science and Challenges -- 1.1 Introduction -- 1.2 Ocean Energy -- 1.2.1 Ocean Thermal Energy Conversion (OTEC) Systems -- 1.2.1.1 Closed-Cycle OTEC -- 1.2.1.2 Open-Cycle OTEC -- 1.2.1.3 Hybrid OTEC Plants -- 1.2.2 Ocean Energy Potential -- 1.3 Tidal Energy -- 1.3.1 Tidal Energy Extraction -- 1.3.2 Turbines -- 1.3.2.1 Bulb Turbine -- 1.3.2.2 Edge Turbine -- 1.3.3 Energy Calculation -- 1.3.4 Tidal Power Utilization -- 1.4 Wave Energy -- 1.5 Socio-Environmental Impacts -- 1.5.1 Social Impacts -- 1.5.2 Environmental Impacts -- 1.6 Current Status and Future Challenges -- 1.7 Conclusion -- References -- Chapter 2: Nuclear Energy and Conventional Clean Fuel -- 2.1 Introduction -- 2.2 The Economy of Nuclear Energy -- 2.2.1 Nuclear Fission -- 2.2.2 Fission-Based Nuclear Reactor -- 2.3 Nuclear Reactor Fuel -- 2.3.1 Nuclear Fusion -- 2.3.2 Fusion-Based Nuclear Reactors -- 2.4 Magnetic Confinement -- 2.5 Nuclear Waste Management -- 2.6 Present Scenario for Nuclear Energy and Environment -- 2.7 Nuclear Power Technology Advantage and Sustainable Development -- 2.8 Future Challenges -- 2.9 Summary and Conclusion -- References -- Chapter 3: Solar Cells: Application and Challenges -- 3.1 Introduction -- 3.2 Solar Cell -- 3.3 Classification of Solar Cells -- 3.3.1 Monocrystalline Silicon Cell (Mono-Si) -- 3.3.2 Polycrystalline Silicon Cell (Poly-Si) -- 3.3.3 Thin-Film Cells -- 3.3.3.1 Amorphous Silicon (a-Si) -- 3.3.3.2 Cadmium Telluride (CdTe) -- 3.3.3.3 Copper Indium Gallium Diselenide (CIGS). -- 3.3.4 Organic Solar Cells -- 3.3.4.1 Dye-Sensitized Solar Cells (DSSC) -- 3.3.4.2 Perovskite Solar Cells -- 3.4 Solar Cells Application -- 3.4.1 Solar Farms/Solar Parks -- 3.4.2 Remote Location -- 3.4.3 Standalone Devices -- 3.4.4 Portable Electronic Devices.
3.4.5 Power in Space -- 3.4.6 Transportation -- 3.4.7 Defense and Military Uses -- 3.4.8 Building-Integrated Uses -- 3.4.9 Agriculture -- 3.5 Challenges and the Prospect -- 3.6 Conclusion -- References -- Chapter 4: Photovoltaic Modules: Battery Storage and Grid Technology -- 4.1 Introduction -- 4.2 Battery Storage Technology -- 4.2.1 Working -- 4.2.2 Battery Types -- 4.2.2.1 Lead-Acid Battery -- 4.2.2.2 Nickel-Cadmium (Ni-cd) Battery -- 4.2.2.3 Lithium-Ion (li-Ion) Battery -- 4.2.3 Present Status of Battery Technology -- 4.3 Sizing and Integration of Photovoltaic and Battery Systems in Distribution Grids -- 4.4 Grid Assembly Situations for Battery Storage Systems -- 4.5 Conclusions -- References -- Chapter 5: Geothermal energy: Exploration, Exploitation, and Production -- 5.1 Introduction -- 5.2 Geothermal Energy Resources -- 5.2.1 Formation of Geothermal Fields in the Earth -- 5.2.2 Types of Geothermal Resources -- 5.2.2.1 Shallow Reservoirs (Low Temperature) -- 5.2.2.2 Deep Reservoirs (High Temperature) -- 5.2.2.3 Deepest Reservoirs (Very High Temperature) -- 5.2.3 Importance of Geothermal Resources -- 5.2.3.1 Advantages of Geothermal Energy -- 5.2.3.2 Disadvantages of Geothermal Energy -- 5.3 Exploration Methodologies -- 5.3.1 Seismic Method -- 5.3.2 Well-Logging Method -- 5.3.3 Gravity Method -- 5.3.4 Magnetic Method -- 5.3.5 Electrical Method -- 5.3.6 Electromagnetic (EM) Method -- 5.3.6.1 Magnetotelluric Technique -- 5.4 Exploitation Methodologies -- 5.4.1 Exploitation Equipment -- 5.4.1.1 Production Pumps -- 5.4.1.2 Piping -- 5.4.1.3 Heat Exchangers -- 5.4.1.4 Heat Pumps -- 5.4.1.5 Reinjection Pumps -- 5.4.2 Types of Geothermal Power Plants -- 5.4.2.1 Dry Steam Plant -- 5.4.2.2 Flash Cycle Steam Plant -- 5.4.2.3 Binary Cycle Plants -- 5.5 Power Production -- 5.6 Other Uses of Geothermal Energy -- 5.7 Conclusions -- References.
Chapter 6: Application of High-Temperature Thermal Energy Storage Materials for Power Plants -- 6.1 Introduction -- 6.2 Concentrated Solar Power Plant (CSP) -- 6.2.1 Parabolic Trough Collector (PTC) -- 6.2.2 Solar Power Tower (SPT) -- 6.2.3 Linear Fresnel Reflector (LFR) -- 6.2.4 Parabolic Dish System (PDS) -- 6.3 Heat Transfer Fluids -- 6.4 Thermal Energy Storage Tank -- 6.5 High-Temperature Thermal Energy Storage Material -- 6.5.1 Types of Energy Storage Materials -- 6.5.1.1 Sensible Heat Storage (SHS) -- 6.5.1.2 Latent Heat Storage -- 6.5.1.3 Thermochemical Storage -- 6.5.2 Characterization Technique of PCMs -- 6.6 Present Status -- 6.7 Challenges and Future Directions. -- 6.8 Summary and Conclusion -- References -- Chapter 7: Hydrogen Fuel: Clean Energy Production Technologies -- 7.1 Introduction -- 7.2 Properties and Potential Uses of Hydrogen -- 7.3 Role of Hydrogen as Energy Reservoir -- 7.4 Why Still Fossil Fuels Are Difficult to Quit? -- 7.5 Hydrogen Production Technologies -- 7.5.1 Hydrogen Generation Using Fossil Fuels -- 7.5.1.1 Steam Reforming of Methane (SRM) -- Advantages of SRM Process -- Disadvantages of SRM Process -- 7.5.1.2 Dry (CO2) Reforming of CH4 (DRM) -- Advantages of Dry (CO2) Reforming of CH4 (DRM) -- Limitations of Dry Reforming of CH4 (DRM) -- 7.5.1.3 Partial Oxidation of CH4 (POX) -- 7.5.1.4 Autothermal Reforming -- 7.5.1.5 Coal Gasification -- 7.5.2 Renewable Sources for Hydrogen Production -- 7.5.2.1 Biomass Gasification -- 7.5.2.2 Aqueous Phase Reforming (APR) -- 7.5.2.3 Water Electrolysis -- 7.5.3 Hydrogen Storage and Distribution -- 7.5.4 Economics of Hydrogen Production -- 7.6 Summary and Conclusion -- References -- Chapter 8: Natural Gas Hydrates: Energy Locked in Cages -- 8.1 Introduction -- 8.1.1 Facts and Properties of Natural Gas Hydrates -- 8.1.2 Structural Information on Natural Gas Hydrates.
8.2 Natural Gas Production Methods from Gas Hydrate Reservoirs -- 8.2.1 Thermal Stimulation -- 8.2.2 Depressurization -- 8.2.3 Additive Injection -- 8.2.4 CO2 Injection -- 8.2.5 CO2 + N2 Injection -- 8.3 Comparison of Production Methods -- 8.4 Numerical Simulation of Gas Hydrate Reservoirs -- 8.5 Operational Geohazards Associated with Natural Gas Hydrates -- 8.6 Natural Geohazards Associated with Gas Hydrate Reservoirs -- 8.7 Global Climate and Natural Gas Hydrates -- 8.8 Future Prospects of Natural Gas Hydrates -- 8.9 Conclusion -- References -- Chapter 9: Gas Hydrates in Man-Made Environments: Applications, Economics, Challenges and Future Directions -- 9.1 Introduction -- 9.2 Hydrate-Based Gas Storage and Transportation -- 9.2.1 Process Economics for Hydrate-Based Gas Storage and Transportation -- 9.2.1.1 Comparison of LNG and NGH Formation Processes -- 9.2.1.2 Hydrogen Storage Cost Comparison -- 9.2.2 Future Energy Applications -- 9.3 Hydrate-Based Cold Energy Storage/Refrigeration and Air Conditioning Applications -- 9.3.1 Hydrate-Based Thermal Energy Storage Plants And their Process Economics -- 9.4 Hydrate-Based Gas Separation Processes -- 9.4.1 Post-Combustion Separation -- 9.4.2 Pre-Combustion Separation -- 9.4.3 Natural Gas Upgrading -- 9.5 Hydrates in Oil and Gas Industries: Flow Assurance -- 9.5.1 Challenges and Knowledge Gaps in Hydrate Management and Mitigation -- References -- Chapter 10: Hydrate-Based Desalination Technology: A Sustainable Approach -- 10.1 Introduction (Need for Desalination) -- 10.2 Concept of Hydrate-Based Desalination -- 10.3 Status of Hydrate-Based Desalination Technology -- 10.3.1 Guest Molecules (Hydrate Formers) Studied for Hydrate-Based Desalination Process -- 10.3.2 Process/Equipment Design for Hydrate-Based Desalination Processes -- 10.3.3 Pilot Plants to Demonstrate Hydrate-Based Desalination.
10.4 Production Water Desalination -- 10.5 Cost Economics of Hydrate-Based Desalination Process -- 10.6 Challenges and the Way Forward for Hydrate-Based Desalination Technology -- References -- Chapter 11: Subsurface Decarbonization Options as CO2 Hydrates with Clean Methane Energy Recovery from Natural Gas Hydrate Res... -- 11.1 Introduction -- 11.1.1 Natural Gas Hydrates: A Potential Source of Energy -- 11.1.1.1 Origin -- 11.1.1.2 Worldwide Occurrence -- 11.1.1.3 Geologic Setting of Hydrate Reservoirs -- 11.1.1.4 Methane Hydrates in Oceanic and Permafrost Sediments: Structure, Cavity Occupancy and Stability in Porous Medium -- 11.2 Production from Natural Gas Hydrate Deposits -- 11.2.1 Method of Depressurization -- 11.2.2 Thermal Stimulation -- 11.2.3 Chemical Injection Method -- 11.2.4 Combination Methods -- 11.3 Subsurface CO2 Storage Options as Clathrate Hydrates -- 11.3.1 Oceanic Environment -- 11.3.2 Permafrost Environment -- 11.3.3 Methane Hydrate Reservoirs: CO2-CH4 Replacement for Clean Methane Energy Recovery -- 11.3.3.1 Schemes of Displacing the Methane (CH4) by Carbon Dioxide (CO2) in Hydrate Sediments -- 11.3.3.2 Laboratory Investigations: Macroscale (Bulk/Porous Media) and Microscale Experiments -- 11.4 Summary -- References -- Chapter 12: Combined Heating and Cooling System with Phase Change Material: A Novel Approach -- 12.1 Introduction -- 12.2 Thermal Energy Storage Methods -- 12.2.1 Sensible Heat Storage -- 12.2.2 Thermochemical Heat Storage -- 12.2.3 Latent Heat Storage -- 12.2.3.1 Phase Change Material (PCM) -- Organic PCM -- Inorganic PCM -- Eutectic PCM -- 12.3 Selection Criteria of PCM -- 12.4 Future Trends of PCM -- 12.4.1 Encapsulation Techniques of PCM -- 12.4.1.1 Classification of Encapsulation -- Macroencapsulation -- Microencapsulation -- Nanoencapsulation -- 12.4.2 Inclusion of Nanoparticles -- 12.5 Applications of PCM.
12.6 Heat Exchangers.
Record Nr. UNINA-9910743337603321
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui