Chemically deposited nanocrystalline metal oxide thin films : synthesis, characterizations, and applications / / Fabian I. Ezema, Chandrakant D. Lokhande, Rajan Jose, editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (931 pages) |
Disciplina | 621.38152 |
Soggetto topico | Thin films |
ISBN | 3-030-68462-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Foreword -- Preface -- Contents -- About the Editors and Contributors -- About the Editors -- Contributors -- Chapter 1: Progress in Solution-Processed Mixed Oxides -- 1.1 Introduction -- 1.2 Solution-Processed Methods for Synthesis of Mixed Oxide -- 1.2.1 Electrodeposition -- 1.2.2 Successive Ionic Layer Adsorption and Reaction (SILAR) -- 1.2.3 Precipitation Method -- 1.2.4 Sol-Gel -- 1.2.5 Chemical Bath Deposition (CBD) -- 1.3 Conclusions -- References -- Chapter 2: Properties and Applications of the Electrochemically Synthesized Metal Oxide Thin Films -- 2.1 Introduction -- 2.2 Electrochemical Synthesis -- 2.3 Electrodeposition of Metal Oxide as Thin Films -- 2.3.1 Zinc Oxide (ZnO) -- 2.3.1.1 Applications of ZnO -- 2.3.2 Copper Oxide (Cu2O) -- 2.3.2.1 Applications of CuO -- 2.3.3 Nickel Oxide (NiO) -- 2.3.3.1 Applications of NiO -- 2.4 Conclusion -- References -- Chapter 3: Structural and Electronic Properties of Various Useful Metal Oxides -- 3.1 Introduction -- 3.2 Structural and Electronic Properties of Various Metal Oxides -- 3.2.1 Titanium Dioxide (TiO2): Local-Density Approximation (LDA) Approach -- 3.2.2 Structural, Cohesive, and Elastic Properties -- 3.2.3 Electronic Structure -- 3.3 Anatase TiO2 Nanocrystals -- 3.3.1 Electronic Properties of Reduced TiO2 Nanocrystals and Stability of Defects -- 3.4 TiO2 Nanocluster and Dye-Nanocluster Systems: Photovoltaic or Photocatalytic Applications -- 3.4.1 Methods and Materials -- 3.4.2 Structural and Electronic Properties of TiO2 Nanocluster and Dye-Nanocluster Systems -- 3.5 Photoexcited TiO2 Nanoparticles -- 3.5.1 Structural Properties -- 3.5.2 Electronic Properties -- 3.6 Indium Oxide (In2O3) -- 3.6.1 Structural and Electronic Properties -- 3.7 Tin(IV) Oxide (SnO2) -- 3.7.1 Structural and Electronic Properties -- 3.8 Zinc Oxide (ZnO) -- 3.8.1 Structural and Electronic Properties.
3.9 Copper (I) Oxide (Cu2O), Copper (II) Oxide (CuO), and Copper Dioxide (CuO2) Nanoclusters -- 3.9.1 Structural and Electronic Properties -- 3.10 Conclusion -- References -- Chapter 4: Properties of Metal Oxides: Insights from First Principles Calculations -- 4.1 Introduction -- 4.2 An Example System: BaTiO3 -- 4.3 Summary -- References -- Chapter 5: Recent Progress in Metal Oxide for Photovoltaic Application -- 5.1 Introduction -- 5.2 Solar Cells for Photovoltaic Applications -- 5.3 Solar Cell Output Parameters -- 5.3.1 Short-Circuit Current (Isc) -- 5.3.2 Open-Circuit Voltage (Voc) -- 5.3.3 Fill Factor (FF) -- 5.3.4 Solar Cell Efficiency -- 5.4 Oxides -- 5.5 Methods of Synthesizing Metal Oxides for Photovoltaic Application -- 5.5.1 Hydrothermal/Solvothermal Approach -- 5.5.2 Thermal Evaporation -- 5.5.3 Sputtering Deposition -- 5.5.4 Coprecipitation -- 5.5.5 Physical Vapor Deposition -- 5.5.6 Chemical Vapor Deposition -- 5.5.7 Sol-Gel Approach -- 5.6 Organic Metal Oxide for Photovoltaic Application -- 5.6.1 Generation of Exciton in Metal Oxides for Photovoltaic Application -- 5.6.2 Exciton Diffusion and Dissociation in Metal Oxides -- 5.6.3 Carrier Transport in Metal Oxide Semiconductors -- 5.6.4 Extraction of Charges at the Electrodes -- 5.7 Inorganic Metal Oxide for Photovoltaic Applications -- 5.7.1 Contributions of Various Inorganic Metal Oxides for the Development of Photovoltaic Cells -- 5.7.2 Efficiency of Inorganic Photovoltaic Solar Cells Made from Metal Oxides -- 5.7.3 Hybrid Metal Oxides as Active Materials for Photovoltaic Application -- 5.7.3.1 Hybrid Perovskite Solar Cells -- 5.7.3.2 Dye-Sensitized Solar Cells (DSSCs) -- 5.8 Active Metal Oxide Roles in Photovoltaic Cells -- 5.8.1 Transparent Electrodes -- 5.8.2 Charge-Blocking Layers -- 5.8.3 Charge Collectors -- 5.8.4 Optical Spacers -- 5.8.5 Intermediate Layers in Tandem Cells. 5.8.6 Stability Enhancers -- 5.9 Review of Some Metal Oxide Materials Used for Photovoltaic Application -- 5.10 Conclusion -- References -- Chapter 6: Structural and Electronic Properties of Metal Oxides and Their Applications in Solar Cells -- 6.1 General Introduction -- 6.2 Structural Properties of Metal Oxides -- 6.3 Electronic Properties of Metal Oxides -- 6.4 Application of Some Transition Metal Oxides in Solar Cells -- 6.4.1 Titanium Dioxide, TiO2 -- 6.4.2 Nickel Oxide, NiO -- 6.4.3 Manganese Oxide, MnO2 -- 6.4.4 Cerium Oxide, CeO2 -- 6.4.5 Cobalt Oxide, CoO -- 6.4.6 Molybdenum Oxide, MoO3 -- 6.5 Charge Transport Mechanism in Metal Oxide/Silicon Solar Cells -- 6.6 Methods of Improving the Efficacy of Transition Metal Oxides -- 6.6.1 Addition of Dopant -- 6.6.2 Formation of Composites -- 6.6.3 Heat/Plasma Treatment -- 6.6.4 Electroplating -- 6.7 Conclusion -- References -- Chapter 7: Optically Active Metal Oxides for Photovoltaic Applications -- 7.1 Introduction -- 7.2 Structure of Thin-Film Solar Cells -- 7.2.1 Ideal Material Properties Requirement in Thin-Film Solar Cells -- 7.3 Metal Oxides in Solar Cells -- 7.4 Application of Metal Oxides in Thin-Film Solar Cells -- 7.4.1 Metal Oxides as Back Contact and Intermediate Barrier Layers in Thin-Film Solar Cells -- 7.4.2 Metal Oxides as Absorber Layers in Thin-Film Solar Cells -- 7.4.3 Metal Oxides as Buffer Layers in Thin-Film Solar Cells -- 7.4.4 Metal Oxides as TCO Layers in Thin-Film Solar Cells -- 7.5 Techniques for the Synthesis of Metal Oxides in Thin-Film Solar Cells -- 7.6 Challenges and Future Scope -- References -- Chapter 8: Metal Oxides for Perovskite Solar Cells -- 8.1 Introduction -- 8.2 Perovskite Solar Cells -- 8.2.1 Working Principle -- 8.2.2 Bandgap Tuning of Perovskite Materials -- 8.2.2.1 Architecture of Perovskite Solar Cells -- 8.3 Metal Oxides -- 8.3.1 ETL -- 8.3.2 TiO2. 8.3.3 SnO2 -- 8.3.4 WO3 -- 8.3.5 ZnO -- 8.3.6 Nb2O5 -- 8.3.7 HTL -- 8.3.8 NiOx -- 8.3.9 CuOx -- 8.3.10 Ternary Oxides -- 8.3.11 Issues with Metal Oxides -- 8.4 Conclusions -- References -- Chapter 9: Doped Metal Oxide Thin Films for Dye-Sensitized Solar Cell and Other Non-Dye-Loaded Photoelectrochemical (PEC) Solar Cell Applications -- 9.1 Introduction -- 9.2 Using Doping as an Effective Method to Engineer Key Properties of ZnO for Enhanced Energy Harvesting -- 9.3 Impacts of Al Impurities on Zinc Oxide Properties -- 9.3.1 Structural Studies -- 9.3.2 Optical Studies -- 9.3.3 Morphological Studies -- 9.4 The Impact of Al-Doped ZnO (AZO) Electrodes on Dye-Sensitize Solar Cell (DSSC) Performance -- 9.5 Effects of Indium Dopant on ZnO Properties -- 9.5.1 Film Thickness Studies -- 9.5.2 Structural Studies -- 9.5.3 Optical Studies -- 9.5.4 Morphological Studies -- 9.5.5 Surface Wettability Studies -- 9.6 The Impact of In-Doped ZnO (IZO) Electrodes on PEC Solar Cell Performance -- 9.7 Conclusions -- References -- Chapter 10: Doped Metal Oxide Thin Films for Enhanced Solar Energy Applications -- 10.1 Introduction -- 10.2 History of Photovoltaics -- 10.3 Photovoltaic Technology -- 10.3.1 Working Principle of a Conventional Silicon Photovoltaic Cell -- 10.3.2 Photovoltaic Cell Performance Characterization -- 10.3.3 Solar Cells -- 10.3.3.1 Short-Circuit Current (Isc) -- 10.3.3.2 Open-Circuit Voltage (Voc) -- 10.3.3.3 Fill Factor (FF) -- 10.3.3.4 Conversion Efficiency -- 10.4 Thin-Film Technology -- 10.4.1 Doping of Thin Films -- 10.4.2 Doped Metal Oxide Solar Cell -- 10.4.2.1 Cobalt Oxide (Co3O4) -- 10.4.2.2 Titanium Dioxide (TiO2) -- 10.4.2.3 Copper Oxide (Cu2O or CuO) -- 10.4.2.4 Ternary Materials -- 10.5 Conclusion -- References -- Chapter 11: Mixed Transition Metal Oxides for Photoelectrochemical Hydrogen Production -- 11.1 Introduction. 11.2 Basic Principles of PEC Water Splitting -- 11.3 Factors Affecting the Water Splitting Performance -- 11.3.1 Bandgap of Photoelectrode Materials -- 11.3.2 Particle Size of Photoelectrode Materials -- 11.3.3 Degree of Crystallinity -- 11.3.4 Dimensions and Surface Areas of Electrode Materials -- 11.3.5 Stability of Photoelectrodes -- 11.3.6 Light Source -- 11.3.7 pH of the Electrolyte -- 11.4 Transition Metal Oxides -- 11.4.1 Classification of Transition Metal Oxides -- 11.4.2 Mixed Transition Metal Oxides -- 11.4.3 Mixed Transition Metal Oxides for Hydrogen Evolution Reaction -- 11.4.4 Mixed Transition Metal Oxides for Oxygen Evolution Reaction -- 11.5 Design, Synthesis, and Characterization of Mixed Transition Metal Oxides -- 11.6 Concluding Remarks -- References -- Chapter 12: Plasmonic Metal Nanoparticles Decorated ZnO Nanostructures for Photoelectrochemical (PEC) Applications -- 12.1 Introduction -- 12.2 Versatility of ZnO -- 12.2.1 Phenomenal Crystal Structure of ZnO -- 12.2.2 Suitability of ZnO for PEC -- 12.2.3 Morphological Variation of ZnO and Their PEC Performance -- 12.2.3.1 Enhanced Light Harvesting -- 12.2.3.2 Localized Surface Plasmon Resonance (LSPR) -- 12.2.3.3 Charge Transport and Separation at Interfaces -- Interfaces Inside Photoelectrodes -- Plasmonic Metal Nanoparticle/ZnO/Semiconductor -- Photoelectrodes and Electrolytes Interfaces -- 12.3 Anti-Photocorrosion -- 12.4 Decoration Vs. Doping -- 12.5 Outlook and Frontiers -- References -- Chapter 13: Oxygen-Deficient Metal Oxide Nanostructures for Photocatalytic Activities -- 13.1 Introduction -- 13.2 Methods for Introducing Oxygen Vacancies in Metal Oxide Nanostructures -- 13.2.1 Doping of Elements -- 13.2.2 Chemical Reduction/Oxidation -- 13.2.3 Electrochemical Reduction -- 13.2.4 Metal Reduction -- 13.2.5 Hydrogenation of the Metal Oxide. 13.2.6 Annealing in Oxygen-Deficient Environment. |
Record Nr. | UNINA-9910488710703321 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
LED packaging technologies : design, manufacture, and applications / / Luruthudass Annaniah, Mohamed Salleh M. Saheed, and Rajan Jose |
Autore | Annaniah Luruthudass |
Pubbl/distr/stampa | Weinheim, Germany : , : WILEY-VCH GmbH, , [2023] |
Descrizione fisica | 1 online resource (179 pages) |
Disciplina | 621.32 |
Soggetto topico | Light emitting diodes |
Soggetto non controllato |
Engineering
Technology & Engineering |
ISBN |
3-527-83167-3
3-527-83166-5 3-527-83168-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- Chapter 1 A Brief History of Artificial Light and LED Packaging -- 1.1 Evolution in Artificial Light -- 1.2 Impact of Light‐Emitting Diode on the World -- 1.3 LED Industrial Chain -- 1.4 Evolution in LED Packaging Technology -- 1.4.1 Low‐Power Package Evolution -- 1.4.2 Mid‐Power LED Packages -- 1.4.3 LED High‐Power and Ultra‐High‐Power Packages -- 1.5 Summary -- References -- Chapter 2 Fundamentals of LED Packaging Technology -- 2.1 Effective Light Extraction -- 2.1.1 Theory of Light Conversion in LED -- 2.1.2 Light Extraction Based on Chip Technology -- 2.1.2.1 Chip Surface Roughing -- 2.1.2.2 Buried Micro‐Reflectors Chip -- 2.1.2.3 Chip Geometrical Shaping and Type -- 2.1.3 Light Extraction Based on High Reflective Packaging Material -- 2.1.3.1 Leadframe Plating Surface Influence -- 2.1.3.2 Housing Material Reflectivity -- 2.1.3.3 Encapsulation Material Light Extraction Efficacy -- 2.1.4 Optical Interface Enhancing Light Extraction -- 2.2 Package Design and Encapsulation Technology -- 2.2.1 Package Design -- 2.2.1.1 Design for Cost -- 2.2.1.2 Design for Reliability -- 2.2.1.3 Design for Manufacturing -- 2.2.1.4 Design for Testing -- 2.2.1.5 Design for Environment -- 2.2.1.6 Design for Assembly at Second Level PCB Board -- 2.2.1.7 Design for Effective Light Extraction -- 2.2.2 Encapsulation of LED -- 2.2.2.1 Epoxy, Silicone, and Hybrid Compound Encapsulation -- 2.2.2.2 Hermetic Sealed Package - Metal Can -- 2.2.2.3 Epoxy Cap Encapsulation -- 2.2.2.4 Glass Cap on Ceramic or Aluminum Encapsulation -- 2.3 LED Thermal Management -- 2.3.1 Fundamental of the LED Thermal Behaviors -- 2.3.2 Thermal Design in LED Package -- 2.3.3 Impact of Thermal Behavior of an LED on Its Performance -- 2.4 Electrical Contact Design -- 2.5 LED Light Conversion Principle.
2.6 Summary -- References -- Chapter 3 LED Packaging Manufacturing Technology -- 3.1 LED Packaging Process Flow -- 3.1.1 Die‐Attach Process -- 3.1.1.1 Die‐Attach and Glue Curing Process -- 3.1.2 Wire Bonding Process -- 3.1.3 Surveillance Checking Using Statistical Process Control -- 3.1.4 Encapsulation Process and Post‐Mold Curing Process -- 3.1.5 Singulation Process -- 3.1.6 Final Test and Auto Vision System Process -- 3.1.7 Packing Process -- 3.2 Common Defects in LED Packaging Industry -- 3.2.1 Die‐crack: Impact on the Electrical and Optical Properties of LED -- 3.2.2 Lifted Die or Glue: Impact on LED Thermal Behavior and LED Performance -- 3.2.3 Wire Interconnect Defects: Impact on LED Electro‐optical Quality -- 3.3 Summary -- References -- Chapter 4 LED Automotive Lighting Application Technology -- 4.1 Basic Science of Light for Automotive - The Photometric -- 4.1.1 Light Intensity -- 4.1.2 Luminous Flux -- 4.1.3 Illuminance -- 4.1.4 Luminance -- 4.1.5 Luminous Efficacy -- 4.2 Lighting - Light Projection "To See" -- 4.2.1 Headlamp -- 4.2.2 Adaptive Front‐Lighting System - Headlamp -- 4.2.3 Optical Concept Automotive Front Lighting - Headlamp -- 4.2.4 Future of LED Headlamp Technology -- 4.2.5 LED Headlamp Thermal Management -- 4.3 Signaling - Lights That Are "To Be Seen" -- 4.3.1 AFL - Day Running Light -- 4.3.2 ARL - Signaling Lights -- 4.3.3 Optic Concepts of Signaling Light "To Be Seen" -- 4.3.3.1 Reflective and Refractive Optics -- 4.3.3.2 Light Guide Optics -- 4.4 Interior Lighting -- 4.5 Summary -- References -- Chapter 5 LED Application For Consumer Industry -- 5.1 Consumer Indoor Lighting -- 5.2 Health Care and Medical Treatments -- 5.3 Safety and Security -- 5.3.1 Led in Iris Recognition System -- 5.3.2 LED in Food Processing -- 5.3.3 Treatment in Solid and Liquid Foods -- 5.3.4 Water Treatment -- References. Chapter 6 LED Application for General Lighting -- 6.1 RETROFIT Lighting -- 6.1.1 RETROFIT Lamp -- 6.1.2 Hospitality Lighting - Architecture Lighting -- 6.2 LEDfit Lighting -- 6.2.1 Residential Lighting - Living Room Down Lighting -- 6.2.2 LED Street Lighting -- 6.2.3 Exterior Architectural Lighting -- 6.2.4 Horticulture Lighting Application -- 6.2.4.1 Photosynthesis -- 6.2.5 Photomorphogenesis -- 6.2.5.1 Impact of LED Light on Horticulture Industry -- 6.3 Summary -- References -- Chapter 7 Quantum LEDs -- 7.1 Quantum LED as the Alternative to Organic LED -- 7.2 Fundamentals of Quantum Dot -- 7.3 Quantum Dots in LED -- 7.4 Quantum LED Structures -- 7.5 QD‐LED Fabrication -- References -- Chapter 8 Ultraviolet LED Packaging and Application -- 8.1 UV LED Application -- 8.2 UV‐A and B LED Packaging Technology -- 8.3 UV‐C Packaging Technology -- 8.4 Future Application of UV‐LED and Packaging Design Evolution -- 8.4.1 Novel Liquid Packaging Structure -- 8.5 Impact of UV‐LED to UV Light Source Business -- 8.6 Summary -- References -- Chapter 9 Lifecycle Analysis and Circular Economy of LEDs -- 9.1 Introduction -- 9.2 LCA of LEDs -- 9.2.1 Materials Footprint -- 9.2.2 Embodied Energy and Carbon Footprint -- 9.3 Circular Economy of LEDs -- 9.3.1 Lower Material Quantities by Design and Enhanced Material Properties -- 9.3.2 Materials with Multifunctionalities -- 9.3.3 Materials of Higher Circularity -- 9.3.4 Materials with Enhanced Durability -- 9.3.5 Materials with Reduced Carbon Footprint and Embodied Energy -- 9.3.6 Material Miles -- 9.3.7 Sustainable Materials from Renewable, Recycled, and Recovered Sources -- 9.3.8 Materials with Higher Environmental Benignity -- 9.3.9 Materials with No Adverse Human Health Effects -- 9.3.10 Materials Enabling Healthy Natural Habitat -- References -- Index -- EULA. |
Record Nr. | UNINA-9910830642903321 |
Annaniah Luruthudass | ||
Weinheim, Germany : , : WILEY-VCH GmbH, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|