Dessins d'enfants on Riemann surfaces / / by Gareth A. Jones, Jürgen Wolfart |
Autore | Jones Gareth A |
Edizione | [1st ed. 2016.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016 |
Descrizione fisica | 1 online resource (264 p.) |
Disciplina | 510 |
Collana | Springer Monographs in Mathematics |
Soggetto topico |
Algebraic geometry
Group theory Functions of complex variables Hyperbolic geometry Algebraic Geometry Group Theory and Generalizations Functions of a Complex Variable Several Complex Variables and Analytic Spaces Hyperbolic Geometry |
ISBN | 3-319-24711-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Historical and introductory background -- Graph embeddings -- Dessins and triangle groups -- Galois actions -- Quasiplatonic surfaces, and automorphisms -- Regular maps -- Regular embeddings of complete graphs -- Wilson operations -- Further examples -- Arithmetic aspects -- Beauville surfaces. |
Record Nr. | UNINA-9910254061303321 |
Jones Gareth A | ||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Elementary Number Theory [[electronic resource] /] / by Gareth A. Jones, Josephine M. Jones |
Autore | Jones Gareth A |
Edizione | [1st ed. 1998.] |
Pubbl/distr/stampa | London : , : Springer London : , : Imprint : Springer, , 1998 |
Descrizione fisica | 1 online resource (XIV, 302 p.) |
Disciplina | 512/.7 |
Collana | Springer Undergraduate Mathematics Series |
Soggetto topico |
Number theory
Number Theory |
ISBN | 1-4471-0613-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. Divisibility -- 1.1 Divisors -- 1.2 Bezout’s identity -- 1.3 Least common multiples -- 1.4 Linear Diophantine equations -- 1.5 Supplementary exercises -- 2. Prime Numbers -- 2.1 Prime numbers and prime-power factorisations -- 2.2 Distribution of primes -- 2.3 Fermat and Mersenne primes -- 2.4 Primality-testing and factorisation -- 2.5 Supplementary exercises -- 3. Congruences -- 3.1 Modular arithmetic -- 3.2 Linear congruences -- 3.3 Simultaneous linear congruences -- 3.4 Simultaneous non-linear congruences -- 3.5 An extension of the Chinese Remainder Theorem -- 3.6 Supplementary exercises -- 4. Congruences with a Prime-power Modulus -- 4.1 The arithmetic of ?p -- 4.2 Pseudoprimes and Carmichael numbers -- 4.3 Solving congruences mod (pe) -- 4.4 Supplementary exercises -- 5. Euler’s Function -- 5.1 Units -- 5.2 Euler’s function -- 5.3 Applications of Euler’s function -- 5.4 Supplementary exercises -- 6. The Group of Units -- 6.1 The group Un -- 6.2 Primitive roots -- 6.3 The group Une, where p is an odd prime -- 6.4 The group U2e -- 6.5 The existence of primitive roots -- 6.6 Applications of primitive roots -- 6.7 The algebraic structure of Un -- 6.8 The universal exponent -- 6.9 Supplementary exercises -- 7. Quadratic Residues -- 7.1 Quadratic congruences -- 7.2 The group of quadratic residues -- 7.3 The Legendre symbol -- 7.4 Quadratic reciprocity -- 7.5 Quadratic residues for prime-power moduli -- 7.6 Quadratic residues for arbitrary moduli -- 7.7 Supplementary exercises -- 8. Arithmetic Functions -- 8.1 Definition and examples -- 8.2 Perfect numbers -- 8.3 The Mobius Inversion Formula -- 8.4 An application of the Mobius Inversion Formula -- 8.5 Properties of the Mobius function -- 8.6 The Dirichlet product -- 8.7 Supplementary exercises -- 9. The Riemann Zeta Function -- 9.1 Historical background -- 9.2 Convergence -- 9.3 Applications to prime numbers -- 9.4 Random integers -- 9.5 Evaluating ?(2) -- 9.6 Evaluating ?(2k) -- 9.7 Dirichlet series -- 9.8 Euler products -- 9.9 Complex variables -- 9.10 Supplementary exercises -- 10. Sums of Squares -- 10.1 Sums of two squares -- 10.2 The Gaussian integers -- 10.3 Sums of three squares -- 10.4 Sums of four squares -- 10.5 Digression on quaternions -- 10.6 Minkowski’s Theorem -- 10.7 Supplementary exercises -- 11. Fermat’s Last Theorem -- 11.1 The problem -- 11.2 Pythagoras’s Theorem -- 11.3 Pythagorean triples -- 11.4 Isosceles triangles and irrationality -- 11.5 The classification of Pythagorean triples -- 11.6 Fermat -- 11.7 The case n = 4 -- 11.8 Odd prime exponents -- 11.9 Lame and Kummer -- 11.10 Modern developments -- 11.11 Further reading -- Solutions to Exercises -- Index of symbols -- Index of names. |
Record Nr. | UNINA-9910479869403321 |
Jones Gareth A | ||
London : , : Springer London : , : Imprint : Springer, , 1998 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Elementary Number Theory [[electronic resource] /] / by Gareth A. Jones, Josephine M. Jones |
Autore | Jones Gareth A |
Edizione | [1st ed. 1998.] |
Pubbl/distr/stampa | London : , : Springer London : , : Imprint : Springer, , 1998 |
Descrizione fisica | 1 online resource (XIV, 302 p.) |
Disciplina | 512/.7 |
Collana | Springer Undergraduate Mathematics Series |
Soggetto topico |
Number theory
Number Theory |
ISBN | 1-4471-0613-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. Divisibility -- 1.1 Divisors -- 1.2 Bezout’s identity -- 1.3 Least common multiples -- 1.4 Linear Diophantine equations -- 1.5 Supplementary exercises -- 2. Prime Numbers -- 2.1 Prime numbers and prime-power factorisations -- 2.2 Distribution of primes -- 2.3 Fermat and Mersenne primes -- 2.4 Primality-testing and factorisation -- 2.5 Supplementary exercises -- 3. Congruences -- 3.1 Modular arithmetic -- 3.2 Linear congruences -- 3.3 Simultaneous linear congruences -- 3.4 Simultaneous non-linear congruences -- 3.5 An extension of the Chinese Remainder Theorem -- 3.6 Supplementary exercises -- 4. Congruences with a Prime-power Modulus -- 4.1 The arithmetic of ?p -- 4.2 Pseudoprimes and Carmichael numbers -- 4.3 Solving congruences mod (pe) -- 4.4 Supplementary exercises -- 5. Euler’s Function -- 5.1 Units -- 5.2 Euler’s function -- 5.3 Applications of Euler’s function -- 5.4 Supplementary exercises -- 6. The Group of Units -- 6.1 The group Un -- 6.2 Primitive roots -- 6.3 The group Une, where p is an odd prime -- 6.4 The group U2e -- 6.5 The existence of primitive roots -- 6.6 Applications of primitive roots -- 6.7 The algebraic structure of Un -- 6.8 The universal exponent -- 6.9 Supplementary exercises -- 7. Quadratic Residues -- 7.1 Quadratic congruences -- 7.2 The group of quadratic residues -- 7.3 The Legendre symbol -- 7.4 Quadratic reciprocity -- 7.5 Quadratic residues for prime-power moduli -- 7.6 Quadratic residues for arbitrary moduli -- 7.7 Supplementary exercises -- 8. Arithmetic Functions -- 8.1 Definition and examples -- 8.2 Perfect numbers -- 8.3 The Mobius Inversion Formula -- 8.4 An application of the Mobius Inversion Formula -- 8.5 Properties of the Mobius function -- 8.6 The Dirichlet product -- 8.7 Supplementary exercises -- 9. The Riemann Zeta Function -- 9.1 Historical background -- 9.2 Convergence -- 9.3 Applications to prime numbers -- 9.4 Random integers -- 9.5 Evaluating ?(2) -- 9.6 Evaluating ?(2k) -- 9.7 Dirichlet series -- 9.8 Euler products -- 9.9 Complex variables -- 9.10 Supplementary exercises -- 10. Sums of Squares -- 10.1 Sums of two squares -- 10.2 The Gaussian integers -- 10.3 Sums of three squares -- 10.4 Sums of four squares -- 10.5 Digression on quaternions -- 10.6 Minkowski’s Theorem -- 10.7 Supplementary exercises -- 11. Fermat’s Last Theorem -- 11.1 The problem -- 11.2 Pythagoras’s Theorem -- 11.3 Pythagorean triples -- 11.4 Isosceles triangles and irrationality -- 11.5 The classification of Pythagorean triples -- 11.6 Fermat -- 11.7 The case n = 4 -- 11.8 Odd prime exponents -- 11.9 Lame and Kummer -- 11.10 Modern developments -- 11.11 Further reading -- Solutions to Exercises -- Index of symbols -- Index of names. |
Record Nr. | UNINA-9910789349303321 |
Jones Gareth A | ||
London : , : Springer London : , : Imprint : Springer, , 1998 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Elementary Number Theory / / by Gareth A. Jones, Josephine M. Jones |
Autore | Jones Gareth A |
Edizione | [1st ed. 1998.] |
Pubbl/distr/stampa | London : , : Springer London : , : Imprint : Springer, , 1998 |
Descrizione fisica | 1 online resource (XIV, 302 p.) |
Disciplina | 512/.7 |
Collana | Springer Undergraduate Mathematics Series |
Soggetto topico |
Number theory
Number Theory |
ISBN | 1-4471-0613-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. Divisibility -- 1.1 Divisors -- 1.2 Bezout’s identity -- 1.3 Least common multiples -- 1.4 Linear Diophantine equations -- 1.5 Supplementary exercises -- 2. Prime Numbers -- 2.1 Prime numbers and prime-power factorisations -- 2.2 Distribution of primes -- 2.3 Fermat and Mersenne primes -- 2.4 Primality-testing and factorisation -- 2.5 Supplementary exercises -- 3. Congruences -- 3.1 Modular arithmetic -- 3.2 Linear congruences -- 3.3 Simultaneous linear congruences -- 3.4 Simultaneous non-linear congruences -- 3.5 An extension of the Chinese Remainder Theorem -- 3.6 Supplementary exercises -- 4. Congruences with a Prime-power Modulus -- 4.1 The arithmetic of ?p -- 4.2 Pseudoprimes and Carmichael numbers -- 4.3 Solving congruences mod (pe) -- 4.4 Supplementary exercises -- 5. Euler’s Function -- 5.1 Units -- 5.2 Euler’s function -- 5.3 Applications of Euler’s function -- 5.4 Supplementary exercises -- 6. The Group of Units -- 6.1 The group Un -- 6.2 Primitive roots -- 6.3 The group Une, where p is an odd prime -- 6.4 The group U2e -- 6.5 The existence of primitive roots -- 6.6 Applications of primitive roots -- 6.7 The algebraic structure of Un -- 6.8 The universal exponent -- 6.9 Supplementary exercises -- 7. Quadratic Residues -- 7.1 Quadratic congruences -- 7.2 The group of quadratic residues -- 7.3 The Legendre symbol -- 7.4 Quadratic reciprocity -- 7.5 Quadratic residues for prime-power moduli -- 7.6 Quadratic residues for arbitrary moduli -- 7.7 Supplementary exercises -- 8. Arithmetic Functions -- 8.1 Definition and examples -- 8.2 Perfect numbers -- 8.3 The Mobius Inversion Formula -- 8.4 An application of the Mobius Inversion Formula -- 8.5 Properties of the Mobius function -- 8.6 The Dirichlet product -- 8.7 Supplementary exercises -- 9. The Riemann Zeta Function -- 9.1 Historical background -- 9.2 Convergence -- 9.3 Applications to prime numbers -- 9.4 Random integers -- 9.5 Evaluating ?(2) -- 9.6 Evaluating ?(2k) -- 9.7 Dirichlet series -- 9.8 Euler products -- 9.9 Complex variables -- 9.10 Supplementary exercises -- 10. Sums of Squares -- 10.1 Sums of two squares -- 10.2 The Gaussian integers -- 10.3 Sums of three squares -- 10.4 Sums of four squares -- 10.5 Digression on quaternions -- 10.6 Minkowski’s Theorem -- 10.7 Supplementary exercises -- 11. Fermat’s Last Theorem -- 11.1 The problem -- 11.2 Pythagoras’s Theorem -- 11.3 Pythagorean triples -- 11.4 Isosceles triangles and irrationality -- 11.5 The classification of Pythagorean triples -- 11.6 Fermat -- 11.7 The case n = 4 -- 11.8 Odd prime exponents -- 11.9 Lame and Kummer -- 11.10 Modern developments -- 11.11 Further reading -- Solutions to Exercises -- Index of symbols -- Index of names. |
Record Nr. | UNINA-9910817245603321 |
Jones Gareth A | ||
London : , : Springer London : , : Imprint : Springer, , 1998 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|