top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Dessins d'enfants on Riemann surfaces / / by Gareth A. Jones, Jürgen Wolfart
Dessins d'enfants on Riemann surfaces / / by Gareth A. Jones, Jürgen Wolfart
Autore Jones Gareth A
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (264 p.)
Disciplina 510
Collana Springer Monographs in Mathematics
Soggetto topico Algebraic geometry
Group theory
Functions of complex variables
Hyperbolic geometry
Algebraic Geometry
Group Theory and Generalizations
Functions of a Complex Variable
Several Complex Variables and Analytic Spaces
Hyperbolic Geometry
ISBN 3-319-24711-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Historical and introductory background -- Graph embeddings -- Dessins and triangle groups -- Galois actions -- Quasiplatonic surfaces, and automorphisms -- Regular maps -- Regular embeddings of complete graphs -- Wilson operations -- Further examples -- Arithmetic aspects -- Beauville surfaces.
Record Nr. UNINA-9910254061303321
Jones Gareth A  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Elementary Number Theory [[electronic resource] /] / by Gareth A. Jones, Josephine M. Jones
Elementary Number Theory [[electronic resource] /] / by Gareth A. Jones, Josephine M. Jones
Autore Jones Gareth A
Edizione [1st ed. 1998.]
Pubbl/distr/stampa London : , : Springer London : , : Imprint : Springer, , 1998
Descrizione fisica 1 online resource (XIV, 302 p.)
Disciplina 512/.7
Collana Springer Undergraduate Mathematics Series
Soggetto topico Number theory
Number Theory
ISBN 1-4471-0613-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Divisibility -- 1.1 Divisors -- 1.2 Bezout’s identity -- 1.3 Least common multiples -- 1.4 Linear Diophantine equations -- 1.5 Supplementary exercises -- 2. Prime Numbers -- 2.1 Prime numbers and prime-power factorisations -- 2.2 Distribution of primes -- 2.3 Fermat and Mersenne primes -- 2.4 Primality-testing and factorisation -- 2.5 Supplementary exercises -- 3. Congruences -- 3.1 Modular arithmetic -- 3.2 Linear congruences -- 3.3 Simultaneous linear congruences -- 3.4 Simultaneous non-linear congruences -- 3.5 An extension of the Chinese Remainder Theorem -- 3.6 Supplementary exercises -- 4. Congruences with a Prime-power Modulus -- 4.1 The arithmetic of ?p -- 4.2 Pseudoprimes and Carmichael numbers -- 4.3 Solving congruences mod (pe) -- 4.4 Supplementary exercises -- 5. Euler’s Function -- 5.1 Units -- 5.2 Euler’s function -- 5.3 Applications of Euler’s function -- 5.4 Supplementary exercises -- 6. The Group of Units -- 6.1 The group Un -- 6.2 Primitive roots -- 6.3 The group Une, where p is an odd prime -- 6.4 The group U2e -- 6.5 The existence of primitive roots -- 6.6 Applications of primitive roots -- 6.7 The algebraic structure of Un -- 6.8 The universal exponent -- 6.9 Supplementary exercises -- 7. Quadratic Residues -- 7.1 Quadratic congruences -- 7.2 The group of quadratic residues -- 7.3 The Legendre symbol -- 7.4 Quadratic reciprocity -- 7.5 Quadratic residues for prime-power moduli -- 7.6 Quadratic residues for arbitrary moduli -- 7.7 Supplementary exercises -- 8. Arithmetic Functions -- 8.1 Definition and examples -- 8.2 Perfect numbers -- 8.3 The Mobius Inversion Formula -- 8.4 An application of the Mobius Inversion Formula -- 8.5 Properties of the Mobius function -- 8.6 The Dirichlet product -- 8.7 Supplementary exercises -- 9. The Riemann Zeta Function -- 9.1 Historical background -- 9.2 Convergence -- 9.3 Applications to prime numbers -- 9.4 Random integers -- 9.5 Evaluating ?(2) -- 9.6 Evaluating ?(2k) -- 9.7 Dirichlet series -- 9.8 Euler products -- 9.9 Complex variables -- 9.10 Supplementary exercises -- 10. Sums of Squares -- 10.1 Sums of two squares -- 10.2 The Gaussian integers -- 10.3 Sums of three squares -- 10.4 Sums of four squares -- 10.5 Digression on quaternions -- 10.6 Minkowski’s Theorem -- 10.7 Supplementary exercises -- 11. Fermat’s Last Theorem -- 11.1 The problem -- 11.2 Pythagoras’s Theorem -- 11.3 Pythagorean triples -- 11.4 Isosceles triangles and irrationality -- 11.5 The classification of Pythagorean triples -- 11.6 Fermat -- 11.7 The case n = 4 -- 11.8 Odd prime exponents -- 11.9 Lame and Kummer -- 11.10 Modern developments -- 11.11 Further reading -- Solutions to Exercises -- Index of symbols -- Index of names.
Record Nr. UNINA-9910479869403321
Jones Gareth A  
London : , : Springer London : , : Imprint : Springer, , 1998
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Elementary Number Theory [[electronic resource] /] / by Gareth A. Jones, Josephine M. Jones
Elementary Number Theory [[electronic resource] /] / by Gareth A. Jones, Josephine M. Jones
Autore Jones Gareth A
Edizione [1st ed. 1998.]
Pubbl/distr/stampa London : , : Springer London : , : Imprint : Springer, , 1998
Descrizione fisica 1 online resource (XIV, 302 p.)
Disciplina 512/.7
Collana Springer Undergraduate Mathematics Series
Soggetto topico Number theory
Number Theory
ISBN 1-4471-0613-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Divisibility -- 1.1 Divisors -- 1.2 Bezout’s identity -- 1.3 Least common multiples -- 1.4 Linear Diophantine equations -- 1.5 Supplementary exercises -- 2. Prime Numbers -- 2.1 Prime numbers and prime-power factorisations -- 2.2 Distribution of primes -- 2.3 Fermat and Mersenne primes -- 2.4 Primality-testing and factorisation -- 2.5 Supplementary exercises -- 3. Congruences -- 3.1 Modular arithmetic -- 3.2 Linear congruences -- 3.3 Simultaneous linear congruences -- 3.4 Simultaneous non-linear congruences -- 3.5 An extension of the Chinese Remainder Theorem -- 3.6 Supplementary exercises -- 4. Congruences with a Prime-power Modulus -- 4.1 The arithmetic of ?p -- 4.2 Pseudoprimes and Carmichael numbers -- 4.3 Solving congruences mod (pe) -- 4.4 Supplementary exercises -- 5. Euler’s Function -- 5.1 Units -- 5.2 Euler’s function -- 5.3 Applications of Euler’s function -- 5.4 Supplementary exercises -- 6. The Group of Units -- 6.1 The group Un -- 6.2 Primitive roots -- 6.3 The group Une, where p is an odd prime -- 6.4 The group U2e -- 6.5 The existence of primitive roots -- 6.6 Applications of primitive roots -- 6.7 The algebraic structure of Un -- 6.8 The universal exponent -- 6.9 Supplementary exercises -- 7. Quadratic Residues -- 7.1 Quadratic congruences -- 7.2 The group of quadratic residues -- 7.3 The Legendre symbol -- 7.4 Quadratic reciprocity -- 7.5 Quadratic residues for prime-power moduli -- 7.6 Quadratic residues for arbitrary moduli -- 7.7 Supplementary exercises -- 8. Arithmetic Functions -- 8.1 Definition and examples -- 8.2 Perfect numbers -- 8.3 The Mobius Inversion Formula -- 8.4 An application of the Mobius Inversion Formula -- 8.5 Properties of the Mobius function -- 8.6 The Dirichlet product -- 8.7 Supplementary exercises -- 9. The Riemann Zeta Function -- 9.1 Historical background -- 9.2 Convergence -- 9.3 Applications to prime numbers -- 9.4 Random integers -- 9.5 Evaluating ?(2) -- 9.6 Evaluating ?(2k) -- 9.7 Dirichlet series -- 9.8 Euler products -- 9.9 Complex variables -- 9.10 Supplementary exercises -- 10. Sums of Squares -- 10.1 Sums of two squares -- 10.2 The Gaussian integers -- 10.3 Sums of three squares -- 10.4 Sums of four squares -- 10.5 Digression on quaternions -- 10.6 Minkowski’s Theorem -- 10.7 Supplementary exercises -- 11. Fermat’s Last Theorem -- 11.1 The problem -- 11.2 Pythagoras’s Theorem -- 11.3 Pythagorean triples -- 11.4 Isosceles triangles and irrationality -- 11.5 The classification of Pythagorean triples -- 11.6 Fermat -- 11.7 The case n = 4 -- 11.8 Odd prime exponents -- 11.9 Lame and Kummer -- 11.10 Modern developments -- 11.11 Further reading -- Solutions to Exercises -- Index of symbols -- Index of names.
Record Nr. UNINA-9910789349303321
Jones Gareth A  
London : , : Springer London : , : Imprint : Springer, , 1998
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Elementary Number Theory / / by Gareth A. Jones, Josephine M. Jones
Elementary Number Theory / / by Gareth A. Jones, Josephine M. Jones
Autore Jones Gareth A
Edizione [1st ed. 1998.]
Pubbl/distr/stampa London : , : Springer London : , : Imprint : Springer, , 1998
Descrizione fisica 1 online resource (XIV, 302 p.)
Disciplina 512/.7
Collana Springer Undergraduate Mathematics Series
Soggetto topico Number theory
Number Theory
ISBN 1-4471-0613-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Divisibility -- 1.1 Divisors -- 1.2 Bezout’s identity -- 1.3 Least common multiples -- 1.4 Linear Diophantine equations -- 1.5 Supplementary exercises -- 2. Prime Numbers -- 2.1 Prime numbers and prime-power factorisations -- 2.2 Distribution of primes -- 2.3 Fermat and Mersenne primes -- 2.4 Primality-testing and factorisation -- 2.5 Supplementary exercises -- 3. Congruences -- 3.1 Modular arithmetic -- 3.2 Linear congruences -- 3.3 Simultaneous linear congruences -- 3.4 Simultaneous non-linear congruences -- 3.5 An extension of the Chinese Remainder Theorem -- 3.6 Supplementary exercises -- 4. Congruences with a Prime-power Modulus -- 4.1 The arithmetic of ?p -- 4.2 Pseudoprimes and Carmichael numbers -- 4.3 Solving congruences mod (pe) -- 4.4 Supplementary exercises -- 5. Euler’s Function -- 5.1 Units -- 5.2 Euler’s function -- 5.3 Applications of Euler’s function -- 5.4 Supplementary exercises -- 6. The Group of Units -- 6.1 The group Un -- 6.2 Primitive roots -- 6.3 The group Une, where p is an odd prime -- 6.4 The group U2e -- 6.5 The existence of primitive roots -- 6.6 Applications of primitive roots -- 6.7 The algebraic structure of Un -- 6.8 The universal exponent -- 6.9 Supplementary exercises -- 7. Quadratic Residues -- 7.1 Quadratic congruences -- 7.2 The group of quadratic residues -- 7.3 The Legendre symbol -- 7.4 Quadratic reciprocity -- 7.5 Quadratic residues for prime-power moduli -- 7.6 Quadratic residues for arbitrary moduli -- 7.7 Supplementary exercises -- 8. Arithmetic Functions -- 8.1 Definition and examples -- 8.2 Perfect numbers -- 8.3 The Mobius Inversion Formula -- 8.4 An application of the Mobius Inversion Formula -- 8.5 Properties of the Mobius function -- 8.6 The Dirichlet product -- 8.7 Supplementary exercises -- 9. The Riemann Zeta Function -- 9.1 Historical background -- 9.2 Convergence -- 9.3 Applications to prime numbers -- 9.4 Random integers -- 9.5 Evaluating ?(2) -- 9.6 Evaluating ?(2k) -- 9.7 Dirichlet series -- 9.8 Euler products -- 9.9 Complex variables -- 9.10 Supplementary exercises -- 10. Sums of Squares -- 10.1 Sums of two squares -- 10.2 The Gaussian integers -- 10.3 Sums of three squares -- 10.4 Sums of four squares -- 10.5 Digression on quaternions -- 10.6 Minkowski’s Theorem -- 10.7 Supplementary exercises -- 11. Fermat’s Last Theorem -- 11.1 The problem -- 11.2 Pythagoras’s Theorem -- 11.3 Pythagorean triples -- 11.4 Isosceles triangles and irrationality -- 11.5 The classification of Pythagorean triples -- 11.6 Fermat -- 11.7 The case n = 4 -- 11.8 Odd prime exponents -- 11.9 Lame and Kummer -- 11.10 Modern developments -- 11.11 Further reading -- Solutions to Exercises -- Index of symbols -- Index of names.
Record Nr. UNINA-9910817245603321
Jones Gareth A  
London : , : Springer London : , : Imprint : Springer, , 1998
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui