Quantum network with multiple cold atomic ensembles / / Bo Jing
| Quantum network with multiple cold atomic ensembles / / Bo Jing |
| Autore | Jing Bo |
| Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (197 pages) |
| Disciplina | 621.382 |
| Collana | Springer theses |
| Soggetto topico |
Quantum communication
Quantum computing Quantum optics |
| ISBN |
9789811903281
9789811903274 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Supervisor's Foreword -- Abstract -- Preface -- Acknowledgements -- Contents -- 1 Introduction -- 1.1 Quantum Teleportation -- 1.2 Connection of Two Quantum Network Nodes -- 1.3 Connection of Multiple Quantum Network Nodes -- 1.4 Physical Realizations of Quantum Networks -- 1.5 State of the Art of Quantum Networks -- 1.6 Thesis Structure -- References -- 2 Interaction Between Single Photons and Atomic Ensembles -- 2.1 Photon-Atom Interaction: Classical Description -- 2.1.1 Photon-Atom Interaction in Free Space -- 2.1.2 Photon-Atom Interaction Inside a Ring Cavity -- 2.2 Cavity Enhanced Photon-Atom Interaction: Quantum Theory -- 2.2.1 Jaynes-Cummings Model -- 2.2.2 Photon Scattering via the Atom Inside the Cavity -- 2.2.3 Interaction Between Photons and Atomic Ensembles Inside a Cavity -- 2.3 Summary -- References -- 3 Preparation of Cold Atomic Ensembles -- 3.1 Vacuum System -- 3.2 Laser System -- 3.2.1 Lasers at 780 nm -- 3.2.2 Lasers at 795 nm -- 3.3 Magnetic Field -- 3.4 Magneto-Optical Trap -- 3.4.1 Fundamentals -- 3.4.2 Numbers of Atoms in MOT -- 3.5 Polarization Gradient Cooling -- 3.6 Cold Atomic Optical Depth and Temperature -- 3.6.1 Measurement of Optical Depth via Absorption Imaging -- 3.6.2 Measurement of Cold Atomic Temperature -- 3.7 Further Cooling of Cold Atoms -- 3.8 Summary -- References -- 4 Highly Retrievable Quantum Memories -- 4.1 Background -- 4.2 DLCZ Quantum Memory and Its Quantization -- 4.2.1 The Write Process -- 4.2.2 The Read Process -- 4.2.3 EIT in the Read Process -- 4.2.4 Performance Criteria for Quantum Memory -- 4.2.5 Storage Lifetime -- 4.3 DLCZ Quantum Memory in the Free Space -- 4.3.1 Experimental Settings -- 4.3.2 Compensation of Environmental Magnetic Field -- 4.3.3 Initialization of Atomic States -- 4.3.4 Accidental Coincidence Events -- 4.3.5 Multi-excitation Events.
4.4 DLCZ Quantum Memory with Ring Cavity Enhancement -- 4.4.1 Setup and Locking of the Ring Cavity -- 4.4.2 Phase Compensation of Cavity Wave Plates -- 4.4.3 Frequency of Cavity Locking Beam and Read Beam -- 4.4.4 Noise from the Cavity Locking Beam -- 4.4.5 Photonic Phase Shift Induced by Atoms -- 4.4.6 Cavity Finesse -- 4.4.7 Influence of Stability of Locked Cavity on Retrieval Efficiency -- 4.4.8 Influence of the Number of Experimental Trials on Retrieval Efficiency -- 4.4.9 Influence of Intensity of Read Beam on Retrieval Efficiency -- 4.4.10 Influence of Excitation Probability on Single Photon Quality Function α -- 4.4.11 Influence of Excitation Probability on Second-Order Correlation Function g2 -- 4.5 DLCZ Quantum Memory with Atoms Initially Prepared in |F=1,mF=-1rangle -- 4.6 Summary -- References -- 5 Entanglement of Three Cold Atomic Ensembles -- 5.1 Background -- 5.2 Entanglement Between Single Photons and Cold Atomic Ensembles -- 5.2.1 Photonic Polarization and Bias Magnetic Field -- 5.2.2 Accidental Coincidences -- 5.2.3 Raman Process -- 5.2.4 Multi-excitation Events -- 5.2.5 Initial State Purity -- 5.2.6 Photon-Atom Entanglement Fidelity -- 5.2.7 Efficiency of Photon-Atom Entanglement -- 5.3 Entanglement Between Two Cold Atomic Ensembles -- 5.3.1 Pulse Shape of Write Beam -- 5.3.2 Indistinguishability of Write-Out Photons -- 5.3.3 Imperfection of Polarization -- 5.3.4 From Photon-Atom Entanglement to Atom-Atom Entanglement -- 5.3.5 Experimental Results -- 5.4 Hybrid Entanglement of Three Cold Atomic Ensembles and Three Flying Photons -- 5.5 GHZ Entanglement of Three Cold Atomic Quantum Memories -- 5.6 Efficiency of Entanglement Generation and Verification -- 5.7 Summary -- References -- 6 Interference of Three Frequency Distinguished Photons -- 6.1 Background -- 6.2 Single Photon Source. 6.3 HOM Interference Between Two Indistinguishable Single Photons -- 6.4 Interference of Two Frequency Distinguished Photons -- 6.5 Interference of Three Frequency Distinguished Photons -- 6.5.1 Experimental Setup and Results -- 6.5.2 Fidelity Analysis -- 6.6 Summary -- References -- 7 Entanglement of Two Cold Atomic Ensembles via 50 km Fibers -- 7.1 Background -- 7.2 Experimental Principle and Setup -- 7.3 Experimental Results -- 7.4 Summary -- References -- 8 Summary and Outlook -- Appendix A Saturated Absorption Spectrum for 87Rb D1 and D2 Line -- Appendix B Calculation of Magnetic Field Generated by Rectangular Helmholtz Coils -- Appendix C Retrieval Efficiency Under Different Polarization Combinations -- Appendix D Fidelity Estimation of Bell State and GHZ State. |
| Record Nr. | UNISA-996466837103316 |
Jing Bo
|
||
| Singapore : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Quantum network with multiple cold atomic ensembles / / Bo Jing
| Quantum network with multiple cold atomic ensembles / / Bo Jing |
| Autore | Jing Bo |
| Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (197 pages) |
| Disciplina | 621.382 |
| Collana | Springer theses |
| Soggetto topico |
Quantum communication
Quantum computing Quantum optics |
| ISBN |
9789811903281
9789811903274 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Supervisor's Foreword -- Abstract -- Preface -- Acknowledgements -- Contents -- 1 Introduction -- 1.1 Quantum Teleportation -- 1.2 Connection of Two Quantum Network Nodes -- 1.3 Connection of Multiple Quantum Network Nodes -- 1.4 Physical Realizations of Quantum Networks -- 1.5 State of the Art of Quantum Networks -- 1.6 Thesis Structure -- References -- 2 Interaction Between Single Photons and Atomic Ensembles -- 2.1 Photon-Atom Interaction: Classical Description -- 2.1.1 Photon-Atom Interaction in Free Space -- 2.1.2 Photon-Atom Interaction Inside a Ring Cavity -- 2.2 Cavity Enhanced Photon-Atom Interaction: Quantum Theory -- 2.2.1 Jaynes-Cummings Model -- 2.2.2 Photon Scattering via the Atom Inside the Cavity -- 2.2.3 Interaction Between Photons and Atomic Ensembles Inside a Cavity -- 2.3 Summary -- References -- 3 Preparation of Cold Atomic Ensembles -- 3.1 Vacuum System -- 3.2 Laser System -- 3.2.1 Lasers at 780 nm -- 3.2.2 Lasers at 795 nm -- 3.3 Magnetic Field -- 3.4 Magneto-Optical Trap -- 3.4.1 Fundamentals -- 3.4.2 Numbers of Atoms in MOT -- 3.5 Polarization Gradient Cooling -- 3.6 Cold Atomic Optical Depth and Temperature -- 3.6.1 Measurement of Optical Depth via Absorption Imaging -- 3.6.2 Measurement of Cold Atomic Temperature -- 3.7 Further Cooling of Cold Atoms -- 3.8 Summary -- References -- 4 Highly Retrievable Quantum Memories -- 4.1 Background -- 4.2 DLCZ Quantum Memory and Its Quantization -- 4.2.1 The Write Process -- 4.2.2 The Read Process -- 4.2.3 EIT in the Read Process -- 4.2.4 Performance Criteria for Quantum Memory -- 4.2.5 Storage Lifetime -- 4.3 DLCZ Quantum Memory in the Free Space -- 4.3.1 Experimental Settings -- 4.3.2 Compensation of Environmental Magnetic Field -- 4.3.3 Initialization of Atomic States -- 4.3.4 Accidental Coincidence Events -- 4.3.5 Multi-excitation Events.
4.4 DLCZ Quantum Memory with Ring Cavity Enhancement -- 4.4.1 Setup and Locking of the Ring Cavity -- 4.4.2 Phase Compensation of Cavity Wave Plates -- 4.4.3 Frequency of Cavity Locking Beam and Read Beam -- 4.4.4 Noise from the Cavity Locking Beam -- 4.4.5 Photonic Phase Shift Induced by Atoms -- 4.4.6 Cavity Finesse -- 4.4.7 Influence of Stability of Locked Cavity on Retrieval Efficiency -- 4.4.8 Influence of the Number of Experimental Trials on Retrieval Efficiency -- 4.4.9 Influence of Intensity of Read Beam on Retrieval Efficiency -- 4.4.10 Influence of Excitation Probability on Single Photon Quality Function α -- 4.4.11 Influence of Excitation Probability on Second-Order Correlation Function g2 -- 4.5 DLCZ Quantum Memory with Atoms Initially Prepared in |F=1,mF=-1rangle -- 4.6 Summary -- References -- 5 Entanglement of Three Cold Atomic Ensembles -- 5.1 Background -- 5.2 Entanglement Between Single Photons and Cold Atomic Ensembles -- 5.2.1 Photonic Polarization and Bias Magnetic Field -- 5.2.2 Accidental Coincidences -- 5.2.3 Raman Process -- 5.2.4 Multi-excitation Events -- 5.2.5 Initial State Purity -- 5.2.6 Photon-Atom Entanglement Fidelity -- 5.2.7 Efficiency of Photon-Atom Entanglement -- 5.3 Entanglement Between Two Cold Atomic Ensembles -- 5.3.1 Pulse Shape of Write Beam -- 5.3.2 Indistinguishability of Write-Out Photons -- 5.3.3 Imperfection of Polarization -- 5.3.4 From Photon-Atom Entanglement to Atom-Atom Entanglement -- 5.3.5 Experimental Results -- 5.4 Hybrid Entanglement of Three Cold Atomic Ensembles and Three Flying Photons -- 5.5 GHZ Entanglement of Three Cold Atomic Quantum Memories -- 5.6 Efficiency of Entanglement Generation and Verification -- 5.7 Summary -- References -- 6 Interference of Three Frequency Distinguished Photons -- 6.1 Background -- 6.2 Single Photon Source. 6.3 HOM Interference Between Two Indistinguishable Single Photons -- 6.4 Interference of Two Frequency Distinguished Photons -- 6.5 Interference of Three Frequency Distinguished Photons -- 6.5.1 Experimental Setup and Results -- 6.5.2 Fidelity Analysis -- 6.6 Summary -- References -- 7 Entanglement of Two Cold Atomic Ensembles via 50 km Fibers -- 7.1 Background -- 7.2 Experimental Principle and Setup -- 7.3 Experimental Results -- 7.4 Summary -- References -- 8 Summary and Outlook -- Appendix A Saturated Absorption Spectrum for 87Rb D1 and D2 Line -- Appendix B Calculation of Magnetic Field Generated by Rectangular Helmholtz Coils -- Appendix C Retrieval Efficiency Under Different Polarization Combinations -- Appendix D Fidelity Estimation of Bell State and GHZ State. |
| Record Nr. | UNINA-9910552731303321 |
Jing Bo
|
||
| Singapore : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||