top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Kinematic control of redundant robot arms using neural networks / / [edited by] Shuai Li, Hong Kong Polytechnic University, Long Jin, Hong Kong Polytechnic University, Mohammed Aquil Mirza, Hong Kong Polytechnic University
Kinematic control of redundant robot arms using neural networks / / [edited by] Shuai Li, Hong Kong Polytechnic University, Long Jin, Hong Kong Polytechnic University, Mohammed Aquil Mirza, Hong Kong Polytechnic University
Autore Li Shuai
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2019
Descrizione fisica 1 online resource
Disciplina 629.895632
Soggetto topico Robots - Kinematics - Data processing
Manipulators (Mechanism) - Automatic control
Redundancy (Engineering) - Data processing
Soggetto genere / forma Electronic books.
ISBN 1-119-55700-3
1-119-55698-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of Figures xiii -- List of Tables xix -- Preface xxi -- Acknowledgments xxv -- Part I Neural Networks for Serial Robot Arm Control 1 -- 1 Zeroing Neural Networks for Control 3 -- 1.1 Introduction 3 -- 1.2 Scheme Formulation and ZNN Solutions 4 -- 1.2.1 ZNN Model 4 -- 1.2.2 Nonconvex Function Activated ZNN Model 8 -- 1.3 Theoretical Analyses 9 -- 1.4 Computer Simulations and Verifications 12 -- 1.4.1 ZNN for Solving (1.13) at t = 1 12 -- 1.4.2 ZNN for Solving (1.13) with Different Bounds 15 -- 1.5 Summary 16 -- 2 Adaptive Dynamic Programming Neural Networks for Control 17 -- 2.1 Introduction 17 -- 2.2 Preliminaries on Variable Structure Control of the Sensor-Actuator System 18 -- 2.3 Problem Formulation 19 -- 2.4 Model-Free Control of the Euler-Lagrange System 20 -- 2.4.1 Optimality Condition 21 -- 2.4.2 Approximating the Action Mapping and the Critic Mapping 21 -- 2.5 Simulation Experiment 23 -- 2.5.1 The Model 23 -- 2.5.2 Experiment Setup and Results 24 -- 2.6 Summary 25 -- 3 Projection Neural Networks for Robot Arm Control 27 -- 3.1 Introduction 27 -- 3.2 Problem Formulation 29 -- 3.3 A Modified Controller without Error Accumulation 30 -- 3.3.1 Existing RNN Solutions 30 -- 3.3.2 Limitations of Existing RNN Solutions 32 -- 3.3.3 The Presented Algorithm 33 -- 3.3.4 Stability 34 -- 3.4 Performance Improvement Using Velocity Compensation 36 -- 3.4.1 A Control Law with Velocity Compensation 36 -- 3.4.2 Stability 37 -- 3.5 Simulations 41 -- 3.5.1 Regulation to a Fixed Position 41 -- 3.5.2 Tracking of Time-Varying References 42 -- 3.5.3 Comparisons 47 -- 3.6 Summary 50 -- 4 Neural Learning and Control Co-Design for Robot Arm Control 51 -- 4.1 Introduction 51 -- 4.2 Problem Formulation 52 -- 4.3 Nominal Neural Controller Design 53 -- 4.4 A Novel Dual Neural Network Model 54 -- 4.4.1 Neural Network Design 54 -- 4.4.2 Stability 56 -- 4.5 Simulations 62 -- 4.5.1 Simulation Setup 62 -- 4.5.2 Simulation Results 63 -- 4.5.2.1 Tracking Performance 63 -- 4.5.2.2 With vs.Without Excitation Noises 64.
4.6 Summary 66 -- 5 Robust Neural Controller Design for Robot Arm Control 67 -- 5.1 Introduction 67 -- 5.2 Problem Formulation 68 -- 5.3 Dual Neural Networks for the Nominal System 69 -- 5.3.1 Neural Network Design 69 -- 5.3.2 Convergence Analysis 71 -- 5.4 Neural Design in the Presence of Noises 72 -- 5.4.1 Polynomial Noises 72 -- 5.4.1.1 Neural Dynamics 73 -- 5.4.1.2 Practical Considerations 77 -- 5.4.2 Special Cases 78 -- 5.4.2.1 Constant Noises 78 -- 5.4.2.2 Linear Noises 80 -- 5.5 Simulations 81 -- 5.5.1 Simulation Setup 81 -- 5.5.2 Nominal Situation 81 -- 5.5.3 Constant Noises 82 -- 5.5.4 Time-Varying Polynomial Noises 86 -- 5.6 Summary 86 -- 6 Using Neural Networks to Avoid Robot Singularity 87 -- 6.1 Introduction 87 -- 6.2 Preliminaries 89 -- 6.3 Problem Formulation 90 -- 6.3.1 Manipulator Kinematics 90 -- 6.3.2 Manipulability 90 -- 6.3.3 Optimization Problem Formulation 91 -- 6.4 Reformulation as a Constrained Quadratic Program 91 -- 6.4.1 Equation Constraint: Speed Level Resolution 91 -- 6.4.2 Redefinition of the Objective Function 92 -- 6.4.3 Set Constraint 93 -- 6.4.4 Reformulation and Convexification 94 -- 6.5 Neural Networks for Redundancy Resolution 95 -- 6.5.1 Conversion to a Nonlinear Equation Set 95 -- 6.5.2 Neural Dynamics for Real-Time Redundancy Resolution 96 -- 6.5.3 Convergence Analysis 96 -- 6.6 Illustrative Examples 98 -- 6.6.1 Manipulability Optimization via Self Motion 98 -- 6.6.2 Manipulability Optimization in Circular Path Tracking 99 -- 6.6.3 Comparisons 102 -- 6.6.4 Summary 104 -- Part II Neural Networks for Parallel Robot Control 105 -- 7 Neural Network Based Stewart Platform Control 107 -- 7.1 Introduction 107 -- 7.2 Preliminaries 108 -- 7.3 Robot Kinematics 109 -- 7.3.1 Geometric Relation 109 -- 7.3.2 Velocity Space Resolution 111 -- 7.4 Problem Formulation as Constrained Optimization 112 -- 7.5 Dynamic Neural Network Model 113 -- 7.5.1 Neural Network Design 113 -- 7.6 Theoretical Results 115 -- 7.6.1 Optimality 115 -- 7.6.2 Stability 116.
7.6.3 Comparison with Other Control Schemes 117 -- 7.7 Numerical Investigation 118 -- 7.7.1 Simulation Setups 118 -- 7.7.2 Circular Trajectory 122 -- 7.7.3 Infinity-Sign Trajectory 127 -- 7.7.4 Square Trajectory 127 -- 7.8 Summary 129 -- 8 Neural Network Based Learning and Control Co-Design for Stewart Platform Control 131 -- 8.1 Introduction 131 -- 8.2 Kinematic Modeling of Stewart Platforms 133 -- 8.2.1 Geometric Relation 133 -- 8.2.2 Velocity Space Resolution 135 -- 8.3 Recurrent Neural Network Design 136 -- 8.3.1 Problem Formulation from an Optimization Perspective 136 -- 8.3.2 Neural Network Dynamics 138 -- 8.3.3 Stability 138 -- 8.3.4 Optimality 139 -- 8.4 Numerical Investigation 142 -- 8.4.1 Setups 142 -- 8.4.2 Circular Trajectory 143 -- 8.4.3 Square Trajectory 143 -- 8.5 Summary 145 -- Part III Neural Networks for Cooperative Control 147 -- 9 Zeroing Neural Networks for Robot Arm Motion Generation 149 -- 9.1 Introduction 149 -- 9.2 Preliminaries 151 -- 9.2.1 Problem Definition and Assumption 151 -- 9.2.1.1 Assumption 151 -- 9.2.2 Manipulator Kinematics 151 -- 9.3 Problem Formulation and Distributed Scheme 152 -- 9.3.1 Problem Formulation and Neural-Dynamic Design 152 -- 9.3.2 Distributed Scheme 153 -- 9.4 NTZNN Solver and Theoretical Analyses 153 -- 9.4.1 ZNN for Real-Time Redundancy Resolution 154 -- 9.4.2 Theoretical Analyses and Results 157 -- 9.5 Illustrative Examples 160 -- 9.5.1 Consensus to a Fixed Configuration 160 -- 9.5.2 Cooperative Motion Generation Perturbed by Noises 161 -- 9.5.3 ZNN-Based Solution Perturbed by Noises 162 -- 9.6 Summary 165 -- 10 Zeroing Neural Networks for Robot Arm Motion Generation 167 -- 10.1 Introduction 167 -- 10.2 Preliminaries, Problem Formulation, and Distributed Scheme 168 -- 10.2.1 Definition and Robot Arm Kinematics 168 -- 10.2.2 Problem Formulation 168 -- 10.2.3 Distributed Scheme 169 -- 10.3 NANTZNN Solver and Theoretical Analyses 169 -- 10.3.1 NANTZNN for Real-Time Redundancy Resolution 170 -- 10.3.2 Theoretical Analyses and Results 171.
10.4 Illustrative Examples 172 -- 10.4.1 Cooperative Motion Planning without Noises 174 -- 10.4.2 Cooperative Motion Planning with Noises 174 -- 10.5 Summary 175 -- Reference 177 -- Index 185.
Record Nr. UNINA-9910467189203321
Li Shuai  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Kinematic control of redundant robot arms using neural networks / / [edited by] Shuai Li, Hong Kong Polytechnic University, Long Jin, Hong Kong Polytechnic University, Mohammed Aquil Mirza, Hong Kong Polytechnic University
Kinematic control of redundant robot arms using neural networks / / [edited by] Shuai Li, Hong Kong Polytechnic University, Long Jin, Hong Kong Polytechnic University, Mohammed Aquil Mirza, Hong Kong Polytechnic University
Autore Li Shuai
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2019
Descrizione fisica 1 online resource
Disciplina 629.895632
Collana THEi Wiley ebooks.
Soggetto topico Robots - Kinematics - Data processing
Manipulators (Mechanism) - Automatic control
Redundancy (Engineering) - Data processing
ISBN 1-119-55699-6
1-119-55700-3
1-119-55698-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of Figures xiii -- List of Tables xix -- Preface xxi -- Acknowledgments xxv -- Part I Neural Networks for Serial Robot Arm Control 1 -- 1 Zeroing Neural Networks for Control 3 -- 1.1 Introduction 3 -- 1.2 Scheme Formulation and ZNN Solutions 4 -- 1.2.1 ZNN Model 4 -- 1.2.2 Nonconvex Function Activated ZNN Model 8 -- 1.3 Theoretical Analyses 9 -- 1.4 Computer Simulations and Verifications 12 -- 1.4.1 ZNN for Solving (1.13) at t = 1 12 -- 1.4.2 ZNN for Solving (1.13) with Different Bounds 15 -- 1.5 Summary 16 -- 2 Adaptive Dynamic Programming Neural Networks for Control 17 -- 2.1 Introduction 17 -- 2.2 Preliminaries on Variable Structure Control of the Sensor-Actuator System 18 -- 2.3 Problem Formulation 19 -- 2.4 Model-Free Control of the Euler-Lagrange System 20 -- 2.4.1 Optimality Condition 21 -- 2.4.2 Approximating the Action Mapping and the Critic Mapping 21 -- 2.5 Simulation Experiment 23 -- 2.5.1 The Model 23 -- 2.5.2 Experiment Setup and Results 24 -- 2.6 Summary 25 -- 3 Projection Neural Networks for Robot Arm Control 27 -- 3.1 Introduction 27 -- 3.2 Problem Formulation 29 -- 3.3 A Modified Controller without Error Accumulation 30 -- 3.3.1 Existing RNN Solutions 30 -- 3.3.2 Limitations of Existing RNN Solutions 32 -- 3.3.3 The Presented Algorithm 33 -- 3.3.4 Stability 34 -- 3.4 Performance Improvement Using Velocity Compensation 36 -- 3.4.1 A Control Law with Velocity Compensation 36 -- 3.4.2 Stability 37 -- 3.5 Simulations 41 -- 3.5.1 Regulation to a Fixed Position 41 -- 3.5.2 Tracking of Time-Varying References 42 -- 3.5.3 Comparisons 47 -- 3.6 Summary 50 -- 4 Neural Learning and Control Co-Design for Robot Arm Control 51 -- 4.1 Introduction 51 -- 4.2 Problem Formulation 52 -- 4.3 Nominal Neural Controller Design 53 -- 4.4 A Novel Dual Neural Network Model 54 -- 4.4.1 Neural Network Design 54 -- 4.4.2 Stability 56 -- 4.5 Simulations 62 -- 4.5.1 Simulation Setup 62 -- 4.5.2 Simulation Results 63 -- 4.5.2.1 Tracking Performance 63 -- 4.5.2.2 With vs.Without Excitation Noises 64.
4.6 Summary 66 -- 5 Robust Neural Controller Design for Robot Arm Control 67 -- 5.1 Introduction 67 -- 5.2 Problem Formulation 68 -- 5.3 Dual Neural Networks for the Nominal System 69 -- 5.3.1 Neural Network Design 69 -- 5.3.2 Convergence Analysis 71 -- 5.4 Neural Design in the Presence of Noises 72 -- 5.4.1 Polynomial Noises 72 -- 5.4.1.1 Neural Dynamics 73 -- 5.4.1.2 Practical Considerations 77 -- 5.4.2 Special Cases 78 -- 5.4.2.1 Constant Noises 78 -- 5.4.2.2 Linear Noises 80 -- 5.5 Simulations 81 -- 5.5.1 Simulation Setup 81 -- 5.5.2 Nominal Situation 81 -- 5.5.3 Constant Noises 82 -- 5.5.4 Time-Varying Polynomial Noises 86 -- 5.6 Summary 86 -- 6 Using Neural Networks to Avoid Robot Singularity 87 -- 6.1 Introduction 87 -- 6.2 Preliminaries 89 -- 6.3 Problem Formulation 90 -- 6.3.1 Manipulator Kinematics 90 -- 6.3.2 Manipulability 90 -- 6.3.3 Optimization Problem Formulation 91 -- 6.4 Reformulation as a Constrained Quadratic Program 91 -- 6.4.1 Equation Constraint: Speed Level Resolution 91 -- 6.4.2 Redefinition of the Objective Function 92 -- 6.4.3 Set Constraint 93 -- 6.4.4 Reformulation and Convexification 94 -- 6.5 Neural Networks for Redundancy Resolution 95 -- 6.5.1 Conversion to a Nonlinear Equation Set 95 -- 6.5.2 Neural Dynamics for Real-Time Redundancy Resolution 96 -- 6.5.3 Convergence Analysis 96 -- 6.6 Illustrative Examples 98 -- 6.6.1 Manipulability Optimization via Self Motion 98 -- 6.6.2 Manipulability Optimization in Circular Path Tracking 99 -- 6.6.3 Comparisons 102 -- 6.6.4 Summary 104 -- Part II Neural Networks for Parallel Robot Control 105 -- 7 Neural Network Based Stewart Platform Control 107 -- 7.1 Introduction 107 -- 7.2 Preliminaries 108 -- 7.3 Robot Kinematics 109 -- 7.3.1 Geometric Relation 109 -- 7.3.2 Velocity Space Resolution 111 -- 7.4 Problem Formulation as Constrained Optimization 112 -- 7.5 Dynamic Neural Network Model 113 -- 7.5.1 Neural Network Design 113 -- 7.6 Theoretical Results 115 -- 7.6.1 Optimality 115 -- 7.6.2 Stability 116.
7.6.3 Comparison with Other Control Schemes 117 -- 7.7 Numerical Investigation 118 -- 7.7.1 Simulation Setups 118 -- 7.7.2 Circular Trajectory 122 -- 7.7.3 Infinity-Sign Trajectory 127 -- 7.7.4 Square Trajectory 127 -- 7.8 Summary 129 -- 8 Neural Network Based Learning and Control Co-Design for Stewart Platform Control 131 -- 8.1 Introduction 131 -- 8.2 Kinematic Modeling of Stewart Platforms 133 -- 8.2.1 Geometric Relation 133 -- 8.2.2 Velocity Space Resolution 135 -- 8.3 Recurrent Neural Network Design 136 -- 8.3.1 Problem Formulation from an Optimization Perspective 136 -- 8.3.2 Neural Network Dynamics 138 -- 8.3.3 Stability 138 -- 8.3.4 Optimality 139 -- 8.4 Numerical Investigation 142 -- 8.4.1 Setups 142 -- 8.4.2 Circular Trajectory 143 -- 8.4.3 Square Trajectory 143 -- 8.5 Summary 145 -- Part III Neural Networks for Cooperative Control 147 -- 9 Zeroing Neural Networks for Robot Arm Motion Generation 149 -- 9.1 Introduction 149 -- 9.2 Preliminaries 151 -- 9.2.1 Problem Definition and Assumption 151 -- 9.2.1.1 Assumption 151 -- 9.2.2 Manipulator Kinematics 151 -- 9.3 Problem Formulation and Distributed Scheme 152 -- 9.3.1 Problem Formulation and Neural-Dynamic Design 152 -- 9.3.2 Distributed Scheme 153 -- 9.4 NTZNN Solver and Theoretical Analyses 153 -- 9.4.1 ZNN for Real-Time Redundancy Resolution 154 -- 9.4.2 Theoretical Analyses and Results 157 -- 9.5 Illustrative Examples 160 -- 9.5.1 Consensus to a Fixed Configuration 160 -- 9.5.2 Cooperative Motion Generation Perturbed by Noises 161 -- 9.5.3 ZNN-Based Solution Perturbed by Noises 162 -- 9.6 Summary 165 -- 10 Zeroing Neural Networks for Robot Arm Motion Generation 167 -- 10.1 Introduction 167 -- 10.2 Preliminaries, Problem Formulation, and Distributed Scheme 168 -- 10.2.1 Definition and Robot Arm Kinematics 168 -- 10.2.2 Problem Formulation 168 -- 10.2.3 Distributed Scheme 169 -- 10.3 NANTZNN Solver and Theoretical Analyses 169 -- 10.3.1 NANTZNN for Real-Time Redundancy Resolution 170 -- 10.3.2 Theoretical Analyses and Results 171.
10.4 Illustrative Examples 172 -- 10.4.1 Cooperative Motion Planning without Noises 174 -- 10.4.2 Cooperative Motion Planning with Noises 174 -- 10.5 Summary 175 -- Reference 177 -- Index 185.
Record Nr. UNINA-9910533474203321
Li Shuai  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Kinematic control of redundant robot arms using neural networks / / [edited by] Shuai Li, Hong Kong Polytechnic University, Long Jin, Hong Kong Polytechnic University, Mohammed Aquil Mirza, Hong Kong Polytechnic University
Kinematic control of redundant robot arms using neural networks / / [edited by] Shuai Li, Hong Kong Polytechnic University, Long Jin, Hong Kong Polytechnic University, Mohammed Aquil Mirza, Hong Kong Polytechnic University
Autore Li Shuai
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2019
Descrizione fisica 1 online resource
Disciplina 629.895632
Collana THEi Wiley ebooks.
Soggetto topico Robots - Kinematics - Data processing
Manipulators (Mechanism) - Automatic control
Redundancy (Engineering) - Data processing
ISBN 1-119-55699-6
1-119-55700-3
1-119-55698-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto List of Figures xiii -- List of Tables xix -- Preface xxi -- Acknowledgments xxv -- Part I Neural Networks for Serial Robot Arm Control 1 -- 1 Zeroing Neural Networks for Control 3 -- 1.1 Introduction 3 -- 1.2 Scheme Formulation and ZNN Solutions 4 -- 1.2.1 ZNN Model 4 -- 1.2.2 Nonconvex Function Activated ZNN Model 8 -- 1.3 Theoretical Analyses 9 -- 1.4 Computer Simulations and Verifications 12 -- 1.4.1 ZNN for Solving (1.13) at t = 1 12 -- 1.4.2 ZNN for Solving (1.13) with Different Bounds 15 -- 1.5 Summary 16 -- 2 Adaptive Dynamic Programming Neural Networks for Control 17 -- 2.1 Introduction 17 -- 2.2 Preliminaries on Variable Structure Control of the Sensor-Actuator System 18 -- 2.3 Problem Formulation 19 -- 2.4 Model-Free Control of the Euler-Lagrange System 20 -- 2.4.1 Optimality Condition 21 -- 2.4.2 Approximating the Action Mapping and the Critic Mapping 21 -- 2.5 Simulation Experiment 23 -- 2.5.1 The Model 23 -- 2.5.2 Experiment Setup and Results 24 -- 2.6 Summary 25 -- 3 Projection Neural Networks for Robot Arm Control 27 -- 3.1 Introduction 27 -- 3.2 Problem Formulation 29 -- 3.3 A Modified Controller without Error Accumulation 30 -- 3.3.1 Existing RNN Solutions 30 -- 3.3.2 Limitations of Existing RNN Solutions 32 -- 3.3.3 The Presented Algorithm 33 -- 3.3.4 Stability 34 -- 3.4 Performance Improvement Using Velocity Compensation 36 -- 3.4.1 A Control Law with Velocity Compensation 36 -- 3.4.2 Stability 37 -- 3.5 Simulations 41 -- 3.5.1 Regulation to a Fixed Position 41 -- 3.5.2 Tracking of Time-Varying References 42 -- 3.5.3 Comparisons 47 -- 3.6 Summary 50 -- 4 Neural Learning and Control Co-Design for Robot Arm Control 51 -- 4.1 Introduction 51 -- 4.2 Problem Formulation 52 -- 4.3 Nominal Neural Controller Design 53 -- 4.4 A Novel Dual Neural Network Model 54 -- 4.4.1 Neural Network Design 54 -- 4.4.2 Stability 56 -- 4.5 Simulations 62 -- 4.5.1 Simulation Setup 62 -- 4.5.2 Simulation Results 63 -- 4.5.2.1 Tracking Performance 63 -- 4.5.2.2 With vs.Without Excitation Noises 64.
4.6 Summary 66 -- 5 Robust Neural Controller Design for Robot Arm Control 67 -- 5.1 Introduction 67 -- 5.2 Problem Formulation 68 -- 5.3 Dual Neural Networks for the Nominal System 69 -- 5.3.1 Neural Network Design 69 -- 5.3.2 Convergence Analysis 71 -- 5.4 Neural Design in the Presence of Noises 72 -- 5.4.1 Polynomial Noises 72 -- 5.4.1.1 Neural Dynamics 73 -- 5.4.1.2 Practical Considerations 77 -- 5.4.2 Special Cases 78 -- 5.4.2.1 Constant Noises 78 -- 5.4.2.2 Linear Noises 80 -- 5.5 Simulations 81 -- 5.5.1 Simulation Setup 81 -- 5.5.2 Nominal Situation 81 -- 5.5.3 Constant Noises 82 -- 5.5.4 Time-Varying Polynomial Noises 86 -- 5.6 Summary 86 -- 6 Using Neural Networks to Avoid Robot Singularity 87 -- 6.1 Introduction 87 -- 6.2 Preliminaries 89 -- 6.3 Problem Formulation 90 -- 6.3.1 Manipulator Kinematics 90 -- 6.3.2 Manipulability 90 -- 6.3.3 Optimization Problem Formulation 91 -- 6.4 Reformulation as a Constrained Quadratic Program 91 -- 6.4.1 Equation Constraint: Speed Level Resolution 91 -- 6.4.2 Redefinition of the Objective Function 92 -- 6.4.3 Set Constraint 93 -- 6.4.4 Reformulation and Convexification 94 -- 6.5 Neural Networks for Redundancy Resolution 95 -- 6.5.1 Conversion to a Nonlinear Equation Set 95 -- 6.5.2 Neural Dynamics for Real-Time Redundancy Resolution 96 -- 6.5.3 Convergence Analysis 96 -- 6.6 Illustrative Examples 98 -- 6.6.1 Manipulability Optimization via Self Motion 98 -- 6.6.2 Manipulability Optimization in Circular Path Tracking 99 -- 6.6.3 Comparisons 102 -- 6.6.4 Summary 104 -- Part II Neural Networks for Parallel Robot Control 105 -- 7 Neural Network Based Stewart Platform Control 107 -- 7.1 Introduction 107 -- 7.2 Preliminaries 108 -- 7.3 Robot Kinematics 109 -- 7.3.1 Geometric Relation 109 -- 7.3.2 Velocity Space Resolution 111 -- 7.4 Problem Formulation as Constrained Optimization 112 -- 7.5 Dynamic Neural Network Model 113 -- 7.5.1 Neural Network Design 113 -- 7.6 Theoretical Results 115 -- 7.6.1 Optimality 115 -- 7.6.2 Stability 116.
7.6.3 Comparison with Other Control Schemes 117 -- 7.7 Numerical Investigation 118 -- 7.7.1 Simulation Setups 118 -- 7.7.2 Circular Trajectory 122 -- 7.7.3 Infinity-Sign Trajectory 127 -- 7.7.4 Square Trajectory 127 -- 7.8 Summary 129 -- 8 Neural Network Based Learning and Control Co-Design for Stewart Platform Control 131 -- 8.1 Introduction 131 -- 8.2 Kinematic Modeling of Stewart Platforms 133 -- 8.2.1 Geometric Relation 133 -- 8.2.2 Velocity Space Resolution 135 -- 8.3 Recurrent Neural Network Design 136 -- 8.3.1 Problem Formulation from an Optimization Perspective 136 -- 8.3.2 Neural Network Dynamics 138 -- 8.3.3 Stability 138 -- 8.3.4 Optimality 139 -- 8.4 Numerical Investigation 142 -- 8.4.1 Setups 142 -- 8.4.2 Circular Trajectory 143 -- 8.4.3 Square Trajectory 143 -- 8.5 Summary 145 -- Part III Neural Networks for Cooperative Control 147 -- 9 Zeroing Neural Networks for Robot Arm Motion Generation 149 -- 9.1 Introduction 149 -- 9.2 Preliminaries 151 -- 9.2.1 Problem Definition and Assumption 151 -- 9.2.1.1 Assumption 151 -- 9.2.2 Manipulator Kinematics 151 -- 9.3 Problem Formulation and Distributed Scheme 152 -- 9.3.1 Problem Formulation and Neural-Dynamic Design 152 -- 9.3.2 Distributed Scheme 153 -- 9.4 NTZNN Solver and Theoretical Analyses 153 -- 9.4.1 ZNN for Real-Time Redundancy Resolution 154 -- 9.4.2 Theoretical Analyses and Results 157 -- 9.5 Illustrative Examples 160 -- 9.5.1 Consensus to a Fixed Configuration 160 -- 9.5.2 Cooperative Motion Generation Perturbed by Noises 161 -- 9.5.3 ZNN-Based Solution Perturbed by Noises 162 -- 9.6 Summary 165 -- 10 Zeroing Neural Networks for Robot Arm Motion Generation 167 -- 10.1 Introduction 167 -- 10.2 Preliminaries, Problem Formulation, and Distributed Scheme 168 -- 10.2.1 Definition and Robot Arm Kinematics 168 -- 10.2.2 Problem Formulation 168 -- 10.2.3 Distributed Scheme 169 -- 10.3 NANTZNN Solver and Theoretical Analyses 169 -- 10.3.1 NANTZNN for Real-Time Redundancy Resolution 170 -- 10.3.2 Theoretical Analyses and Results 171.
10.4 Illustrative Examples 172 -- 10.4.1 Cooperative Motion Planning without Noises 174 -- 10.4.2 Cooperative Motion Planning with Noises 174 -- 10.5 Summary 175 -- Reference 177 -- Index 185.
Record Nr. UNINA-9910813790403321
Li Shuai  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Robot manipulator redundancy resolution / / Yunong Zhang, Long Jin, Sun Yatsen University
Robot manipulator redundancy resolution / / Yunong Zhang, Long Jin, Sun Yatsen University
Autore Zhang Yunong <1973->
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2018
Descrizione fisica 1 online resource (407 pages)
Disciplina 629.8/933
Soggetto topico Robots - Control systems
Manipulators (Mechanism)
Redundancy (Engineering)
ISBN 1-119-38142-8
1-119-38143-6
1-119-38144-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910270936703321
Zhang Yunong <1973->  
Hoboken, New Jersey : , : Wiley, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Robot manipulator redundancy resolution / / Yunong Zhang, Long Jin, Sun Yatsen University
Robot manipulator redundancy resolution / / Yunong Zhang, Long Jin, Sun Yatsen University
Autore Zhang Yunong <1973->
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2018
Descrizione fisica 1 online resource (407 pages)
Disciplina 629.8/933
Soggetto topico Robots - Control systems
Manipulators (Mechanism)
Redundancy (Engineering)
ISBN 1-119-38142-8
1-119-38143-6
1-119-38144-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910824063803321
Zhang Yunong <1973->  
Hoboken, New Jersey : , : Wiley, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui