Finite element analysis of antennas and arrays / / Jian-Ming Jin, Douglas J. Riley |
Autore | Jin Jian-Ming <1962-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, NJ, : John Wiley & Sons, : IEEE Press, c2009 |
Descrizione fisica | 1 online resource (468 p.) |
Disciplina |
621.382/4
621.3824 |
Altri autori (Persone) | RileyDouglas J. <1962-> |
Soggetto topico |
Antenna arrays
Finite element method |
ISBN |
1-282-03074-4
9786612030741 0-470-40973-8 0-470-40972-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface -- Acknowledgments -- Chapter 1: Introduction -- 1.1 Numerical Simulation of Antennas -- 1.2 Finite Element Analysis vs. Other Numerical Methods -- 1.3 Frequency- vs. Time-Domain Simulations -- 1.4 Brief Review of Past Work -- 1.5 Overview of This Book -- References -- Chapter 2: Finite Element Formulation -- 2.1 Finite Element Formulation in the Frequency Domain -- 2.2 Finite Element Formulation in the Time Domain -- 2.3 Modeling of Complex Materials -- 2.3.1 Modeling of Electrically and Magnetically Lossy Materials -- 2.3.2 Modeling of Electrically Dispersive Materials -- 2.3.3 Modeling of Magnetically Dispersive Materials -- 2.3.4 Modeling of Doubly Dispersive Lossy Materials -- 2.4 Solution of the Finite Element Equations -- 2.5 Higher-Order and Curvilinear Finite Elements -- 2.6 Summary -- References -- Chapter 3: Finite Element Mesh Truncation -- 3.1 Absorbing Boundary Conditions -- 3.1.1 First-Order Absorbing Boundary Condition -- 3.1.2 Second-Order Absorbing Boundary Condition -- 3.2 Perfectly Matched Layers -- 3.2.1 PML in Terms of Stretched Coordinates -- 3.2.2 PML as an Anisotropic Material Absorber -- 3.2.3 PML for Truncating Computational Domain -- 3.2.4 Finite Element Implementation of PML -- 3.2.5 ABC-Backed, Complementary, CFS, and Second-Order PMLs -- 3.3 Boundary Integral Equations -- 3.3.1 Frequency-Domain Formulations -- 3.3.2 Time-Domain Formulations -- 3.3.3 Treatment of Infinite Ground Plane -- 3.4 Summary -- References -- Chapter 4: Hybrid FETD-FDTD Technique -- 4.1 The FDTD Method -- 4.2 PML Implementation in FDTD -- 4.2.1 FDTD Stretched-Coordinate PML -- 4.2.2 FDTD Anisotropic PML -- 4.3 Near-to-Far-Field Transformation in FDTD -- 4.4 Alternative FETD Formulation -- 4.5 Equivalence between FETD and FDTD -- 4.6 Stable FETD-FDTD Interface -- 4.6.1 Initial Approaches -- 4.6.2 Stable Formulation -- 4.7 Building Hybrid Meshes -- 4.8 Wave-Equation Stablization -- 4.9 Validation Examples -- 4.10 Summary -- References -- Chapter 5: Antenna Source Modeling and Parameter Calculation.
5.1 Antenna Feed Modeling -- 5.1.1 Current Probe -- 5.1.2 Voltage Gap Generator -- 5.1.3 Waveguide Feed Model -- 5.2 Plane-Wave Excitation -- 5.2.1 Total-Field Formulation -- 5.2.2 Scattered-Field Formulation -- 5.2.3 Total- and Scattered-Field Decomposition Approach -- 5.3 Far-Field Pattern Computation -- 5.4 Near-Field Visualization -- 5.5 Summary -- References -- Chapter 6: Modeling of Complex Structures -- 6.1 Thin Material Layers and Sheets -- 6.1.1 Impedance Boundary Conditions -- 6.1.2 Shell Element Formulation -- 6.2 Thin Wires and Slots -- 6.2.1 Thin Wires -- 6.2.2 Thin Slots -- 6.3 Lumped Circuit Elements -- 6.3.1 Coupled First-Order Equations -- 6.3.2 Wave Equation -- 6.3.3 Example -- 6.4 Distributed Feed Network -- 6.5 System-Level Coupling Example -- 6.5.1 Internal Dispersive Material Calibration -- 6.5.2 External Illumination and Aperture Coupling -- 6.6 Summary -- References -- Chapter 7: Antenna Simulation Examples -- 7.1 Narrowband Antennas -- 7.1.1 Coaxial-fed Monopole Antenna -- 7.1.2 Monopole Antennas on a Plate -- 7.1.3 Patch Antennas on a Plate -- 7.1.4 Conformal Patch Antenna Array -- 7.2 Broadband Antennas -- 7.2.1 Ridged Horn Antenna -- 7.2.2 Sinuous Antenna -- 7.2.3 Logarithmic Spiral Antenna -- 7.2.4 Inverted Conical Spiral Antenna -- 7.2.5 Antipodal Vivaldi Antenna -- 7.2.6 Vlasov Antenna -- 7.3 Antenna RCS Simulations -- 7.3.1 Microstrip Patch Antenna -- 7.3.2 Standard Gain Horn Antenna -- 7.4 Summary -- References -- Chapter 8: Axisymmetric Antenna Modeling -- 8.1 Method of Analysis -- 8.1.1 Finite Element Formulation -- 8.1.2 Mesh Truncation Using Perfectly Matched Layers -- 8.1.3 Mesh Truncation Using Boundary Integral Equations -- 8.2 Application Examples -- 8.2.1 Luneburg Lens -- 8.2.2 Corrugated Horn -- 8.2.3 Current Loop Inside a Radome -- 8.3 Summary -- References -- Chapter 9: Infinite Phased Array Modeling -- 9.1 Frequency-Domain Modeling -- 9.1.1 Periodic Boundary Conditions -- 9.1.2 Mesh Truncation Techniques -- 9.1.3 Extension to Skew Arrays. 9.1.4 Extension to Scattering Analysis -- 9.1.5 Application Examples -- 9.2 Time-Domain Modeling -- 9.2.1 Transformed Field Variable -- 9.2.2 Mesh Truncation Techniques -- 9.2.3 General Material Modeling -- 9.2.4 Application Examples -- 9.3 Approximation to Finite Arrays -- 9.4 Summary -- References -- Chapter 10: Finite Phased Array Modeling -- 10.1 Frequency-Domain Modeling -- 10.1.1 The FETI-DPEM1 Formulation -- 10.1.2 The FETI-DPEM2 Formulation -- 10.1.3 Nonconforming Domain Decomposition -- 10.1.4 Application Examples -- 10.2 Time-Domain Modeling -- 10.2.1 The Dual-Field Domain Decomposition Method -- 10.2.2 Domain Decomposition for Iterative Solutions -- 10.2.3 Application Examples -- 10.3 Summary -- References -- Chapter 11: Antenna-Platform Interaction Modeling -- 11.1 Coupled Analysis -- 11.1.1 FETI-DPEM with Domain Decomposition -- 11.1.2 Hybrid FETD-FDTD with Domain Decomposition -- 11.1.3 Hybrid FE-BI Method with FMM Acceleration -- 11.2 Decoupled Analysis -- 11.2.1 Near-Field Calculation -- 11.2.2 Far-Field Evaluation by Numerical Methods -- 11.2.3 Far-Field Evaluation by Asymptotic Techniques -- 11.2.4 Direct and Iterative Improvements -- 11.3 Summary -- References -- Chapter 12: Numerical and Practical Considerations -- 12.1 Choice of Simulation Technologies -- 12.2 Frequency- vs. Time-Domain Simulation Tools -- 12.3 Fast Frequency Sweep -- 12.4 Numerical Convergence -- 12.5 Domain Decomposition and Parallel Computing -- 12.6 Verification and Validation of Predictions -- 12.7 Summary -- References -- Index. |
Record Nr. | UNINA-9910145956803321 |
Jin Jian-Ming <1962-> | ||
Hoboken, NJ, : John Wiley & Sons, : IEEE Press, c2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
A finite element-boundary integral formulation for scattering by three-dimensional cavity-backed apertures [[electronic resource] /] / Jian-Ming Jin and John L. Volakis |
Autore | Jin Jian-Ming <1962-> |
Pubbl/distr/stampa | Ann Arbor, Mich. : , : University of Michigan, College of Engineering, Dept. of Electrical Engineering & Computer Science, Radiation Laboratory, , [1990] |
Descrizione fisica | 20 pages, 8 unnumbered pages : digital, PDF file |
Altri autori (Persone) | VolakisJohn Leonidas <1956-> |
Collana | NASA-CR |
Soggetto topico |
Apertures
Boundary integral method Cavities Electromagnetic scattering Finite element method Shapes |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | Finite element boundary integral formulation for scattering by three-dimensional cavity-backed apertures |
Record Nr. | UNINA-9910690078203321 |
Jin Jian-Ming <1962-> | ||
Ann Arbor, Mich. : , : University of Michigan, College of Engineering, Dept. of Electrical Engineering & Computer Science, Radiation Laboratory, , [1990] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Theory and computation of electromagnetic fields / / Jianming Jin, Department of Electrical and Computer Engineering, University of Illinois at Urbana Champaign |
Autore | Jin Jian-Ming <1962-> |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : IEEE Press : , : Wiley, , 2015 |
Descrizione fisica | 1 online resource (740 p.) |
Disciplina | 530.14/1 |
Soggetto topico | Electromagnetic fields - Mathematics |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-10809-8
1-119-10808-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Basic electromagnetic theory -- Electromagnetic radiation in free space -- Electromagnetic theorems and principles -- Transmission lines and plane waves -- Fields and waves in rectangular coordinates -- Fields and waves in cylindrical coordinates. |
Record Nr. | UNINA-9910460604703321 |
Jin Jian-Ming <1962-> | ||
Hoboken, New Jersey : , : IEEE Press : , : Wiley, , 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Theory and computation of electromagnetic fields / / Jianming Jin, Department of Electrical and Computer Engineering, University of Illinois at Urbana Champaign |
Autore | Jin Jian-Ming <1962-> |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : IEEE Press : , : Wiley, , 2015 |
Descrizione fisica | 1 online resource (740 p.) |
Disciplina | 530.14/1 |
Collana | Wiley – IEEE |
Soggetto topico | Electromagnetic fields - Mathematics |
ISBN |
1-119-10809-8
1-119-10808-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Basic electromagnetic theory -- Electromagnetic radiation in free space -- Electromagnetic theorems and principles -- Transmission lines and plane waves -- Fields and waves in rectangular coordinates -- Fields and waves in cylindrical coordinates. |
Record Nr. | UNINA-9910798082303321 |
Jin Jian-Ming <1962-> | ||
Hoboken, New Jersey : , : IEEE Press : , : Wiley, , 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Theory and computation of electromagnetic fields / / Jianming Jin, Department of Electrical and Computer Engineering, University of Illinois at Urbana Champaign |
Autore | Jin Jian-Ming <1962-> |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : IEEE Press : , : Wiley, , 2015 |
Descrizione fisica | 1 online resource (740 p.) |
Disciplina | 530.14/1 |
Collana | Wiley – IEEE |
Soggetto topico | Electromagnetic fields - Mathematics |
ISBN |
1-119-10809-8
1-119-10808-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Basic electromagnetic theory -- Electromagnetic radiation in free space -- Electromagnetic theorems and principles -- Transmission lines and plane waves -- Fields and waves in rectangular coordinates -- Fields and waves in cylindrical coordinates. |
Record Nr. | UNINA-9910807259803321 |
Jin Jian-Ming <1962-> | ||
Hoboken, New Jersey : , : IEEE Press : , : Wiley, , 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Theory and computation of electromagnetic fields / / Jian-Ming Jin |
Autore | Jin Jian-Ming <1962-> |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , c2010 |
Descrizione fisica | 1 online resource (618 p.) |
Disciplina |
530.14/1
530.141 |
Soggetto topico | Electromagnetic fields - Mathematics |
Soggetto genere / forma | Electronic books. |
ISBN |
1-283-91788-2
0-470-87386-8 1-118-08811-5 0-470-87425-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
PREFACE -- ACKNOWLEDGMENTS -- PART I ELECTROMAGNETIC FIELD THEORY -- CHAPTER 1 BASIC ELECTROMAGNETIC THEORY -- 1.1 Review of Vector Analysis -- 1.1.1 Vector Operations and Integral Theorems -- 1.1.2 Symbolic Vector Method -- 1.1.3 Helmholtz Decomposition Theorem -- 1.1.4 Green's Theorems -- 1.2 Maxwell's Equations in Terms of Total Charges and Currents -- 1.2.1 Maxwell's Equations in Integral Form -- 1.2.2 Maxwell's Equations in Differential Form -- 1.2.3 Current Continuity Equation -- 1.2.4 The Lorentz Force Law -- 1.3 Constitutive Relations -- 1.3.1 Electric Polarization -- 1.3.2 Magnetization -- 1.3.3 Electric Conduction -- 1.3.4 Classifi cation of Media -- 1.4 Maxwell's Equations in Terms of Free Charges and Currents -- 1.5 Boundary Conditions -- 1.6 Energy, Power, and Poynting's Theorem -- 1.7 Time-Harmonic Fields -- 1.7.1 Time-Harmonic Fields -- 1.7.2 Fourier Transforms -- 1.7.3 Complex Power -- 1.7.4 Complex Permittivity and Permeability -- CHAPTER 2 ELECTROMAGNETIC RADIATION IN FREE SPACE -- 2.1 Scalar and Vector Potentials -- 2.1.1 Static Fields -- 2.1.2 Time-Harmonic Fields and the Lorenz Gauge Condition -- 2.2 Solution of Vector Potentials in Free Space -- 2.2.1 Delta Function and Green's Function -- 2.2.2 Green's Function in Free Space -- 2.2.3 Field-Source Relations in Free Space -- 2.2.4 Why Use Auxiliary Potential Functions -- 2.2.5 Free-Space Dyadic Green's Functions -- 2.3 Electromagnetic Radiation in Free Space -- 2.3.1 Infi nitesimal Electric Dipole -- 2.3.2 Finite Electric Dipole -- 2.3.3 Far-Field Approximation and the Sommerfeld Radiation Condition -- 2.3.4 Circular Current Loop and Magnetic Dipole -- 2.4 Radiation by Surface Currents and Phased Arrays -- 2.4.1 Radiation by a Surface Current -- 2.4.2 Radiation by a Phased Array -- CHAPTER 3 ELECTROMAGNETIC THEOREMS AND PRINCIPLES -- 3.1 Uniqueness Theorem -- 3.2 Image Theory -- 3.2.1 Basic Image Theory -- 3.2.2 Half-Space Field-Source Relations -- 3.3 Reciprocity Theorems -- 3.3.1 General Reciprocity Theorem.
3.3.2 Lorentz Reciprocity Theorem -- 3.3.3 Rayleigh-Carson Reciprocity Theorem -- 3.4 Equivalence Principles -- 3.4.1 Surface Equivalence Principle -- 3.4.2 Application to Scattering by a Conducting Object -- 3.4.3 Application to Scattering by a Dielectric Object -- 3.4.4 Volume Equivalence Principle -- 3.5 Duality Principle -- 3.6 Aperture Radiation and Scattering -- 3.6.1 Equivalent Problems -- 3.6.2 Babinet's Principle -- 3.6.3 Complementary Antennas -- CHAPTER 4 TRANSMISSION LINES AND PLANE WAVES -- 4.1 Transmission Line Theory -- 4.1.1 Governing Differential Equations and General Solutions -- 4.1.2 Refl ection and Transmission -- 4.1.3 Green's Function and Eigenfunction Expansion -- 4.2 Wave Equations and General Solutions -- 4.2.1 Wave Equations and Solution by Separation of Variables -- 4.2.2 Characteristics of a Plane Wave -- 4.2.3 Wave Velocities and Attenuation -- 4.2.4 Linear, Circular, and Elliptical Polarizations -- 4.2.5 Wave Propagation in Metamaterials -- 4.3 Plane Waves Generated by A Current Sheet -- 4.4 Refl ection and Transmission -- 4.4.1 Refl ection and Transmission at Normal Incidence -- 4.4.2 Refl ection and Transmission at Oblique Incidence -- 4.4.3 Total Transmission and Total Reflection -- 4.4.4 Transmission into a Left-Handed Medium -- 4.4.5 Plane Waves versus Transmission Lines -- 4.5 Plane Waves in Anisotropic and Bi-Isotropic Media -- 4.5.1 Plane Waves in Uniaxial Media -- 4.5.2 Plane Waves in Gyrotropic Media -- 4.5.3 Plane Waves in Chiral Media -- CHAPTER 5 FIELDS AND WAVES IN RECTANGULAR COORDINATES -- 5.1 Uniform Waveguides -- 5.1.1 General Analysis -- 5.1.2 General Characteristics -- 5.1.3 Uniform Rectangular Waveguide -- 5.1.4 Losses in Waveguides and Attenuation Constant -- 5.2 Uniform Cavities -- 5.2.1 General Theory -- 5.2.2 Rectangular Cavity -- 5.2.3 Material and Geometry Perturbations -- 5.3 Partially Filled Waveguides and Dielectric Slab Waveguides -- 5.3.1 General Theory -- 5.3.2 Partially Filled Rectangular Waveguide -- 5.3.3 Dielectric Slab Waveguide on a Ground Plane. 5.4 Field Excitation in Waveguides -- 5.4.1 Excitation by Planar Surface Currents -- 5.4.2 Excitation by General Volumetric Currents -- 5.5 Fields in Planar Layered Media -- 5.5.1 Spectral Green's Function and Sommerfeld Identity -- 5.5.2 Vertical Electric Dipole above a Layered Medium -- 5.5.3 Horizontal Electric Dipole above a Layered Medium -- 5.5.4 Dipoles on a Grounded Dielectric Slab -- CHAPTER 6 FIELDS AND WAVES IN CYLINDRICAL COORDINATES -- 6.1 Solution of Wave Equation -- 6.1.1 Solution by Separation of Variables -- 6.1.2 Cylindrical Wave Functions -- 6.2 Circular and Coaxial Waveguides and Cavities -- 6.2.1 Circular Waveguide -- 6.2.2 Coaxial Waveguide -- 6.2.3 Cylindrical Cavity -- 6.3 Circular Dielectric Waveguide -- 6.3.1 Analysis of Hybrid Modes -- 6.3.2 Characteristics of Hybrid Modes -- 6.4 Wave Transformation and Scattering Analysis -- 6.4.1 Wave Transformation -- 6.4.2 Scattering by a Circular Conducting Cylinder -- 6.4.3 Scattering by a Circular Dielectric Cylinder -- 6.4.4 Scattering by a Circular Multilayer Dielectric Cylinder -- 6.5 Radiation by Infi nitely Long Currents -- 6.5.1 Line Current Radiation in Free Space -- 6.5.2 Radiation by a Cylindrical Surface Current -- 6.5.3 Radiation in the Presence of a Circular Conducting Cylinder -- 6.5.4 Radiation in the Presence of a Conducting Wedge -- 6.5.5 Radiation by a Finite Current -- CHAPTER 7 FIELDS AND WAVES IN SPHERICAL COORDINATES -- 7.1 Solution of Wave Equation -- 7.1.1 Solution by Separation of Variables -- 7.1.2 Spherical Wave Functions -- 7.1.3 TEr and TMr Modes -- 7.2 Spherical Cavity -- 7.3 Biconical Antenna -- 7.3.1 Infi nitely Long Model -- 7.3.2 Finite Biconical Antenna -- 7.4 Wave Transformation and Scattering Analysis -- 7.4.1 Wave Transformation -- 7.4.2 Expansion of a Plane Wave -- 7.4.3 Scattering by a Conducting Sphere -- 7.4.4 Scattering by a Dielectric Sphere -- 7.4.5 Scattering by a Multilayer Dielectric Sphere -- 7.5 Addition Theorem and Radiation Analysis -- 7.5.1 Addition Theorem for Spherical Wave Functions. 7.5.2 Radiation of a Spherical Surface Current -- 7.5.3 Radiation in the Presence of a Sphere -- 7.5.4 Radiation in the Presence of a Conducting Cone -- PART II ELECTROMAGNETIC FIELD COMPUTATION -- CHAPTER 8 THE FINITE DIFFERENCE METHOD -- 8.1 Finite Differencing Formulas -- 8.2 One-Dimensional Analysis -- 8.2.1 Solution of the Diffusion Equation -- 8.2.2 Solution of the Wave Equation -- 8.2.3 Stability Analysis -- 8.2.4 Numerical Dispersion Analysis -- 8.3 Two-Dimensional Analysis -- 8.3.1 Analysis in the Time Domain -- 8.3.2 Analysis in the Frequency Domain -- 8.4 Yee's FDTD Scheme -- 8.4.1 Two-Dimensional Analysis -- 8.4.2 Three-Dimensional Analysis -- 8.5 Absorbing Boundary Conditions -- 8.5.1 One-Dimensional ABC -- 8.5.2 Two-Dimensional ABCs -- 8.5.3 Perfectly Matched Layers -- 8.6 Modeling of Dispersive Media -- 8.6.1 Recursive Convolution Approach -- 8.6.2 Auxiliary Differential Equation Approach -- 8.7 Wave Excitation and Far-Field Calculation -- 8.7.1 Modeling of Wave Excitation -- 8.7.2 Near-to-Far Field Transformation -- 8.8 Summary -- CHAPTER 9 THE FINITE ELEMENT METHOD -- 9.1 Introduction to the Finite Element Method -- 9.1.1 The General Principle -- 9.1.2 One-Dimensional Example -- 9.2 Finite Element Analysis of Scalar Fields -- 9.2.1 The Boundary-Value Problem -- 9.2.2 Finite Element Formulation -- 9.2.3 Application Examples -- 9.3 Finite Element Analysis of Vector Fields -- 9.3.1 The Boundary-Value Problem -- 9.3.2 Finite Element Formulation -- 9.3.3 Application Examples -- 9.4 Finite Element Analysis in the Time Domain -- 9.4.1 The Boundary-Value Problem -- 9.4.2 Finite Element Formulation -- 9.4.3 Application Examples -- 9.5 Absorbing Boundary Conditions -- 9.5.1 Two-Dimensional ABCs -- 9.5.2 Three-Dimensional ABCs -- 9.5.3 Perfectly Matched Layers -- 9.6 Some Numerical Aspects -- 9.6.1 Mesh Generation -- 9.6.2 Matrix Solvers -- 9.6.3 Higher-Order Elements -- 9.6.4 Curvilinear Elements -- 9.6.5 Adaptive Finite Element Analysis -- CHAPTER 10 THE METHOD OF MOMENTS. 10.1 Introduction to the Method of Moments -- 10.2 Two-Dimensional Analysis -- 10.2.1 Formulation of Integral Equations -- 10.2.2 Scattering by a Conducting Cylinder -- 10.2.3 Scattering by a Conducting Strip -- 10.2.4 Scattering by a Homogeneous Dielectric Cylinder -- 10.3 Three-Dimensional Analysis -- 10.3.1 Formulation of Integral Equations -- 10.3.2 Scattering and Radiation by a Conducting Wire -- 10.3.3 Scattering by a Conducting Body -- 10.3.4 Scattering by a Homogeneous Dielectric Body -- 10.3.5 Scattering by an Inhomogeneous Dielectric Body -- 10.4 Analysis of Periodic Structures -- 10.4.1 Scattering by a Planar Periodic Conducting Patch Array -- 10.4.2 Scattering by a Discrete Body-of-Revolution Object -- 10.5 Analysis of Microstrip Antennas and Circuits -- 10.5.1 Formulation of Integral Equations -- 10.5.2 The Moment-Method Solution -- 10.5.3 Evaluation of Green's Functions -- 10.5.4 Far-Field Calculation and Application Examples -- 10.6 The Moment Method in the Time Domain -- 10.6.1 Time-Domain Integral Equations -- 10.6.2 Marching-On-in-Time Solution -- 10.7 Summary -- CHAPTER 11 FAST ALGORITHMS AND HYBRID TECHNIQUES -- 11.1 Introduction to Fast Algorithms -- 11.2 Conjugate Gradient-FFT Method -- 11.2.1 Scattering by a Conducting Strip or Wire -- 11.2.2 Scattering by a Conducting Plate -- 11.2.3 Scattering by a Dielectric Object -- 11.3 Adaptive Integral Method -- 11.3.1 Planar Structures -- 11.3.2 Three-Dimensional Objects -- 11.4 Fast Multipole Method -- 11.4.1 Two-Dimensional Analysis -- 11.4.2 Three-Dimensional Analysis -- 11.4.3 Multilevel Fast Multipole Algorithm -- 11.5 Adaptive Cross-Approximation Algorithm -- 11.5.1 Low-Rank Matrix -- 11.5.2 Adaptive Cross-Approximation -- 11.5.3 Application to the Moment-Method Solution -- 11.6 Introduction to Hybrid Techniques -- 11.7 Hybrid Finite Difference-Finite Element Method -- 11.7.1 Relation between FETD and FDTD -- 11.7.2 Hybridization of FETD and FDTD -- 11.7.3 Application Example -- 11.8 Hybrid Finite Element-Boundary Integral Method. 11.8.1 Traditional Formulation -- 11.8.2 Symmetric Formulation -- 11.8.3 Numerical Examples -- 11.9 Summary -- CHAPTER 12 CONCLUDING REMARKS ON COMPUTATIONAL ELECTROMAGNETICS -- 12.1 Overview of Computational Electromagnetics -- 12.1.1 Frequency- versus Time-Domain Analysis -- 12.1.2 High-Frequency Asymptotic Techniques -- 12.1.3 First-Principle Numerical Methods -- 12.1.4 Time-Domain Simulation Methods -- 12.1.5 Hybrid Techniques -- 12.2 Applications of Computational Electromagnetics -- 12.3 Challenges in Computational Electromagnetics -- References -- APPENDIX -- Vector Identities -- Integral Theorems -- Coordinate Transformation -- INDEX. |
Record Nr. | UNISA-996205708603316 |
Jin Jian-Ming <1962-> | ||
Hoboken, New Jersey : , : Wiley, , c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Theory and computation of electromagnetic fields / / Jian-Ming Jin |
Autore | Jin Jian-Ming <1962-> |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , c2010 |
Descrizione fisica | 1 online resource (618 p.) |
Disciplina |
530.14/1
530.141 |
Soggetto topico | Electromagnetic fields - Mathematics |
ISBN |
1-283-91788-2
0-470-87386-8 1-118-08811-5 0-470-87425-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
PREFACE -- ACKNOWLEDGMENTS -- PART I ELECTROMAGNETIC FIELD THEORY -- CHAPTER 1 BASIC ELECTROMAGNETIC THEORY -- 1.1 Review of Vector Analysis -- 1.1.1 Vector Operations and Integral Theorems -- 1.1.2 Symbolic Vector Method -- 1.1.3 Helmholtz Decomposition Theorem -- 1.1.4 Green's Theorems -- 1.2 Maxwell's Equations in Terms of Total Charges and Currents -- 1.2.1 Maxwell's Equations in Integral Form -- 1.2.2 Maxwell's Equations in Differential Form -- 1.2.3 Current Continuity Equation -- 1.2.4 The Lorentz Force Law -- 1.3 Constitutive Relations -- 1.3.1 Electric Polarization -- 1.3.2 Magnetization -- 1.3.3 Electric Conduction -- 1.3.4 Classifi cation of Media -- 1.4 Maxwell's Equations in Terms of Free Charges and Currents -- 1.5 Boundary Conditions -- 1.6 Energy, Power, and Poynting's Theorem -- 1.7 Time-Harmonic Fields -- 1.7.1 Time-Harmonic Fields -- 1.7.2 Fourier Transforms -- 1.7.3 Complex Power -- 1.7.4 Complex Permittivity and Permeability -- CHAPTER 2 ELECTROMAGNETIC RADIATION IN FREE SPACE -- 2.1 Scalar and Vector Potentials -- 2.1.1 Static Fields -- 2.1.2 Time-Harmonic Fields and the Lorenz Gauge Condition -- 2.2 Solution of Vector Potentials in Free Space -- 2.2.1 Delta Function and Green's Function -- 2.2.2 Green's Function in Free Space -- 2.2.3 Field-Source Relations in Free Space -- 2.2.4 Why Use Auxiliary Potential Functions -- 2.2.5 Free-Space Dyadic Green's Functions -- 2.3 Electromagnetic Radiation in Free Space -- 2.3.1 Infi nitesimal Electric Dipole -- 2.3.2 Finite Electric Dipole -- 2.3.3 Far-Field Approximation and the Sommerfeld Radiation Condition -- 2.3.4 Circular Current Loop and Magnetic Dipole -- 2.4 Radiation by Surface Currents and Phased Arrays -- 2.4.1 Radiation by a Surface Current -- 2.4.2 Radiation by a Phased Array -- CHAPTER 3 ELECTROMAGNETIC THEOREMS AND PRINCIPLES -- 3.1 Uniqueness Theorem -- 3.2 Image Theory -- 3.2.1 Basic Image Theory -- 3.2.2 Half-Space Field-Source Relations -- 3.3 Reciprocity Theorems -- 3.3.1 General Reciprocity Theorem.
3.3.2 Lorentz Reciprocity Theorem -- 3.3.3 Rayleigh-Carson Reciprocity Theorem -- 3.4 Equivalence Principles -- 3.4.1 Surface Equivalence Principle -- 3.4.2 Application to Scattering by a Conducting Object -- 3.4.3 Application to Scattering by a Dielectric Object -- 3.4.4 Volume Equivalence Principle -- 3.5 Duality Principle -- 3.6 Aperture Radiation and Scattering -- 3.6.1 Equivalent Problems -- 3.6.2 Babinet's Principle -- 3.6.3 Complementary Antennas -- CHAPTER 4 TRANSMISSION LINES AND PLANE WAVES -- 4.1 Transmission Line Theory -- 4.1.1 Governing Differential Equations and General Solutions -- 4.1.2 Refl ection and Transmission -- 4.1.3 Green's Function and Eigenfunction Expansion -- 4.2 Wave Equations and General Solutions -- 4.2.1 Wave Equations and Solution by Separation of Variables -- 4.2.2 Characteristics of a Plane Wave -- 4.2.3 Wave Velocities and Attenuation -- 4.2.4 Linear, Circular, and Elliptical Polarizations -- 4.2.5 Wave Propagation in Metamaterials -- 4.3 Plane Waves Generated by A Current Sheet -- 4.4 Refl ection and Transmission -- 4.4.1 Refl ection and Transmission at Normal Incidence -- 4.4.2 Refl ection and Transmission at Oblique Incidence -- 4.4.3 Total Transmission and Total Reflection -- 4.4.4 Transmission into a Left-Handed Medium -- 4.4.5 Plane Waves versus Transmission Lines -- 4.5 Plane Waves in Anisotropic and Bi-Isotropic Media -- 4.5.1 Plane Waves in Uniaxial Media -- 4.5.2 Plane Waves in Gyrotropic Media -- 4.5.3 Plane Waves in Chiral Media -- CHAPTER 5 FIELDS AND WAVES IN RECTANGULAR COORDINATES -- 5.1 Uniform Waveguides -- 5.1.1 General Analysis -- 5.1.2 General Characteristics -- 5.1.3 Uniform Rectangular Waveguide -- 5.1.4 Losses in Waveguides and Attenuation Constant -- 5.2 Uniform Cavities -- 5.2.1 General Theory -- 5.2.2 Rectangular Cavity -- 5.2.3 Material and Geometry Perturbations -- 5.3 Partially Filled Waveguides and Dielectric Slab Waveguides -- 5.3.1 General Theory -- 5.3.2 Partially Filled Rectangular Waveguide -- 5.3.3 Dielectric Slab Waveguide on a Ground Plane. 5.4 Field Excitation in Waveguides -- 5.4.1 Excitation by Planar Surface Currents -- 5.4.2 Excitation by General Volumetric Currents -- 5.5 Fields in Planar Layered Media -- 5.5.1 Spectral Green's Function and Sommerfeld Identity -- 5.5.2 Vertical Electric Dipole above a Layered Medium -- 5.5.3 Horizontal Electric Dipole above a Layered Medium -- 5.5.4 Dipoles on a Grounded Dielectric Slab -- CHAPTER 6 FIELDS AND WAVES IN CYLINDRICAL COORDINATES -- 6.1 Solution of Wave Equation -- 6.1.1 Solution by Separation of Variables -- 6.1.2 Cylindrical Wave Functions -- 6.2 Circular and Coaxial Waveguides and Cavities -- 6.2.1 Circular Waveguide -- 6.2.2 Coaxial Waveguide -- 6.2.3 Cylindrical Cavity -- 6.3 Circular Dielectric Waveguide -- 6.3.1 Analysis of Hybrid Modes -- 6.3.2 Characteristics of Hybrid Modes -- 6.4 Wave Transformation and Scattering Analysis -- 6.4.1 Wave Transformation -- 6.4.2 Scattering by a Circular Conducting Cylinder -- 6.4.3 Scattering by a Circular Dielectric Cylinder -- 6.4.4 Scattering by a Circular Multilayer Dielectric Cylinder -- 6.5 Radiation by Infi nitely Long Currents -- 6.5.1 Line Current Radiation in Free Space -- 6.5.2 Radiation by a Cylindrical Surface Current -- 6.5.3 Radiation in the Presence of a Circular Conducting Cylinder -- 6.5.4 Radiation in the Presence of a Conducting Wedge -- 6.5.5 Radiation by a Finite Current -- CHAPTER 7 FIELDS AND WAVES IN SPHERICAL COORDINATES -- 7.1 Solution of Wave Equation -- 7.1.1 Solution by Separation of Variables -- 7.1.2 Spherical Wave Functions -- 7.1.3 TEr and TMr Modes -- 7.2 Spherical Cavity -- 7.3 Biconical Antenna -- 7.3.1 Infi nitely Long Model -- 7.3.2 Finite Biconical Antenna -- 7.4 Wave Transformation and Scattering Analysis -- 7.4.1 Wave Transformation -- 7.4.2 Expansion of a Plane Wave -- 7.4.3 Scattering by a Conducting Sphere -- 7.4.4 Scattering by a Dielectric Sphere -- 7.4.5 Scattering by a Multilayer Dielectric Sphere -- 7.5 Addition Theorem and Radiation Analysis -- 7.5.1 Addition Theorem for Spherical Wave Functions. 7.5.2 Radiation of a Spherical Surface Current -- 7.5.3 Radiation in the Presence of a Sphere -- 7.5.4 Radiation in the Presence of a Conducting Cone -- PART II ELECTROMAGNETIC FIELD COMPUTATION -- CHAPTER 8 THE FINITE DIFFERENCE METHOD -- 8.1 Finite Differencing Formulas -- 8.2 One-Dimensional Analysis -- 8.2.1 Solution of the Diffusion Equation -- 8.2.2 Solution of the Wave Equation -- 8.2.3 Stability Analysis -- 8.2.4 Numerical Dispersion Analysis -- 8.3 Two-Dimensional Analysis -- 8.3.1 Analysis in the Time Domain -- 8.3.2 Analysis in the Frequency Domain -- 8.4 Yee's FDTD Scheme -- 8.4.1 Two-Dimensional Analysis -- 8.4.2 Three-Dimensional Analysis -- 8.5 Absorbing Boundary Conditions -- 8.5.1 One-Dimensional ABC -- 8.5.2 Two-Dimensional ABCs -- 8.5.3 Perfectly Matched Layers -- 8.6 Modeling of Dispersive Media -- 8.6.1 Recursive Convolution Approach -- 8.6.2 Auxiliary Differential Equation Approach -- 8.7 Wave Excitation and Far-Field Calculation -- 8.7.1 Modeling of Wave Excitation -- 8.7.2 Near-to-Far Field Transformation -- 8.8 Summary -- CHAPTER 9 THE FINITE ELEMENT METHOD -- 9.1 Introduction to the Finite Element Method -- 9.1.1 The General Principle -- 9.1.2 One-Dimensional Example -- 9.2 Finite Element Analysis of Scalar Fields -- 9.2.1 The Boundary-Value Problem -- 9.2.2 Finite Element Formulation -- 9.2.3 Application Examples -- 9.3 Finite Element Analysis of Vector Fields -- 9.3.1 The Boundary-Value Problem -- 9.3.2 Finite Element Formulation -- 9.3.3 Application Examples -- 9.4 Finite Element Analysis in the Time Domain -- 9.4.1 The Boundary-Value Problem -- 9.4.2 Finite Element Formulation -- 9.4.3 Application Examples -- 9.5 Absorbing Boundary Conditions -- 9.5.1 Two-Dimensional ABCs -- 9.5.2 Three-Dimensional ABCs -- 9.5.3 Perfectly Matched Layers -- 9.6 Some Numerical Aspects -- 9.6.1 Mesh Generation -- 9.6.2 Matrix Solvers -- 9.6.3 Higher-Order Elements -- 9.6.4 Curvilinear Elements -- 9.6.5 Adaptive Finite Element Analysis -- CHAPTER 10 THE METHOD OF MOMENTS. 10.1 Introduction to the Method of Moments -- 10.2 Two-Dimensional Analysis -- 10.2.1 Formulation of Integral Equations -- 10.2.2 Scattering by a Conducting Cylinder -- 10.2.3 Scattering by a Conducting Strip -- 10.2.4 Scattering by a Homogeneous Dielectric Cylinder -- 10.3 Three-Dimensional Analysis -- 10.3.1 Formulation of Integral Equations -- 10.3.2 Scattering and Radiation by a Conducting Wire -- 10.3.3 Scattering by a Conducting Body -- 10.3.4 Scattering by a Homogeneous Dielectric Body -- 10.3.5 Scattering by an Inhomogeneous Dielectric Body -- 10.4 Analysis of Periodic Structures -- 10.4.1 Scattering by a Planar Periodic Conducting Patch Array -- 10.4.2 Scattering by a Discrete Body-of-Revolution Object -- 10.5 Analysis of Microstrip Antennas and Circuits -- 10.5.1 Formulation of Integral Equations -- 10.5.2 The Moment-Method Solution -- 10.5.3 Evaluation of Green's Functions -- 10.5.4 Far-Field Calculation and Application Examples -- 10.6 The Moment Method in the Time Domain -- 10.6.1 Time-Domain Integral Equations -- 10.6.2 Marching-On-in-Time Solution -- 10.7 Summary -- CHAPTER 11 FAST ALGORITHMS AND HYBRID TECHNIQUES -- 11.1 Introduction to Fast Algorithms -- 11.2 Conjugate Gradient-FFT Method -- 11.2.1 Scattering by a Conducting Strip or Wire -- 11.2.2 Scattering by a Conducting Plate -- 11.2.3 Scattering by a Dielectric Object -- 11.3 Adaptive Integral Method -- 11.3.1 Planar Structures -- 11.3.2 Three-Dimensional Objects -- 11.4 Fast Multipole Method -- 11.4.1 Two-Dimensional Analysis -- 11.4.2 Three-Dimensional Analysis -- 11.4.3 Multilevel Fast Multipole Algorithm -- 11.5 Adaptive Cross-Approximation Algorithm -- 11.5.1 Low-Rank Matrix -- 11.5.2 Adaptive Cross-Approximation -- 11.5.3 Application to the Moment-Method Solution -- 11.6 Introduction to Hybrid Techniques -- 11.7 Hybrid Finite Difference-Finite Element Method -- 11.7.1 Relation between FETD and FDTD -- 11.7.2 Hybridization of FETD and FDTD -- 11.7.3 Application Example -- 11.8 Hybrid Finite Element-Boundary Integral Method. 11.8.1 Traditional Formulation -- 11.8.2 Symmetric Formulation -- 11.8.3 Numerical Examples -- 11.9 Summary -- CHAPTER 12 CONCLUDING REMARKS ON COMPUTATIONAL ELECTROMAGNETICS -- 12.1 Overview of Computational Electromagnetics -- 12.1.1 Frequency- versus Time-Domain Analysis -- 12.1.2 High-Frequency Asymptotic Techniques -- 12.1.3 First-Principle Numerical Methods -- 12.1.4 Time-Domain Simulation Methods -- 12.1.5 Hybrid Techniques -- 12.2 Applications of Computational Electromagnetics -- 12.3 Challenges in Computational Electromagnetics -- References -- APPENDIX -- Vector Identities -- Integral Theorems -- Coordinate Transformation -- INDEX. |
Record Nr. | UNINA-9910133594103321 |
Jin Jian-Ming <1962-> | ||
Hoboken, New Jersey : , : Wiley, , c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|