top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Materials for high-temperature fuel cells [[electronic resource] /] / edited by San Ping Jiang and Yushan Yan
Materials for high-temperature fuel cells [[electronic resource] /] / edited by San Ping Jiang and Yushan Yan
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2013
Descrizione fisica 1 online resource (403 p.)
Disciplina 621.312429
Altri autori (Persone) JiangSan Ping
YanYushan
Collana Materials for sustainable energy and development
Soggetto topico Fuel cells - Materials
ISBN 1-5231-1090-2
3-527-64426-1
3-527-64428-8
3-527-64427-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Materials for High-Temperature Fuel Cells; Contents; Series Editor Preface; Preface; About the Series Editor; About the Volume Editor; List of Contributors; 1 Advanced Anodes for Solid Oxide Fuel Cells; 1.1 Introduction; 1.2 Ni-YSZ Anode Overview; 1.3 Insights from Real Ni-YSZ Microstructures; 1.4 Mechanistic Understanding of Fuel Oxidation in Ni-Based Anodes; 1.4.1 Hydrogen Oxidation; 1.4.2 Hydrocarbon Fuels in Ni-Based Anodes; 1.5 Poisoning of Ni-Based Anodes; 1.6 Alternative Anode Materials for Direct Hydrocarbon Utilization; 1.6.1 Electronic Conductivity of Alternative Materials
1.6.2 Electrocatalytic Activity of Alternative Anode Materials1.6.3 Poisoning of Alternative Anode Materials; 1.7 Infiltration as an Alternative Fabrication Method; 1.8 Summary and Outlook; References; 2 Advanced Cathodes for Solid Oxide Fuel Cells; 2.1 Introduction; 2.2 Cathodes on Oxygen-Ion-Conducting Electrolytes; 2.2.1 Cathodes on Doped Ceria Electrolytes; 2.2.1.1 Perovskite; 2.2.1.2 Double Perovskites; 2.2.2 Cathodes on Stabilized Zirconia Electrolytes; 2.2.2.1 La1-xSrxMnO3-Based Perovskites; 2.2.2.2 Doped La0.8Sr0.2MnO3; 2.2.2.3 Cobalt-Containing Cathodes with a Buffering Layer
2.3 Cathodes on Proton-Conducting Electrolytes2.3.1 Cobaltite; 2.3.2 Ferrite; 2.3.3 Bismuthate; 2.4 Advanced Techniques in Cathode Fabrication; 2.4.1 Wet Impregnation; 2.4.1.1 Alleviated Phase Reaction; 2.4.1.2 Optimized Microstructure; 2.4.1.3 Matched Thermal Expansion Coefficient; 2.4.1.4 Reduced Cost of Metal Catalyst; 2.4.2 Surfactant-Assisted Assembly Approach; 2.4.3 Spray Pyrolysis; 2.5 Summary; References; 3 Oxide Ion-Conducting Materials for Electrolytes; 3.1 Introduction; 3.2 Oxide Ion Conductivity in Metal Oxide; 3.2.1 Fluorite Oxides; 3.2.1.1 Stabilized ZrO2; 3.2.1.2 Doped CeO2
3.2.2 Perovskite Oxide3.2.3 Perovskite-Related Oxide; 3.2.4 New Class of Oxide Ion-Conducting Oxide; 3.3 Electrolyte Efficiency; 3.4 Strain Effects on Oxide Ion Conductivity; 3.5 Degradation in Conductivity; 3.6 Concluding Remarks; References; 4 Proton-Conducting Materials as Electrolytes for Solid Oxide Fuel Cells; 4.1 Introduction; 4.2 The Principle of Proton-Conducting Oxides; 4.3 Proton-Conducting Materials for Solid Oxide Fuel Cells; 4.3.1 BaCeO3- and BaZrO3-Based Proton-Conducting Oxides; 4.3.2 Other Perovskite-Related Proton-Conducting Oxides
4.3.3 Niobate- and Tantalate-Based Proton-Conducting Oxides4.3.4 Proton Conduction in Typical O2- Ion Conducting Materials; 4.3.5 Other Proton-Conducting Materials; 4.4 Solid Oxide Fuel Cells Based on Proton-Conducting Electrolytes; 4.5 Electrode Materials and Anode Reactions for SOFCs Based on Proton-Conducting Electrolytes; 4.6 Conclusion; References; 5 Metallic Interconnect Materials of Solid Oxide Fuel Cells; 5.1 Introduction; 5.2 Oxidation Behaviors of Candidate Alloys; 5.2.1 Oxidation in Cathode Atmosphere; 5.2.2 Oxidation in Anode Atmosphere; 5.2.3 Oxidation in Dual Atmospheres
5.2.4 Chromium Evaporation from Metallic Interconnects
Record Nr. UNINA-9910141603703321
Weinheim, : Wiley-VCH, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Materials for high-temperature fuel cells / / edited by San Ping Jiang and Yushan Yan
Materials for high-temperature fuel cells / / edited by San Ping Jiang and Yushan Yan
Edizione [1st ed.]
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2013
Descrizione fisica 1 online resource (403 p.)
Disciplina 621.312429
Altri autori (Persone) JiangSan Ping
YanYushan
Collana Materials for sustainable energy and development
Soggetto topico Fuel cells - Materials
ISBN 1-5231-1090-2
3-527-64426-1
3-527-64428-8
3-527-64427-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Materials for High-Temperature Fuel Cells; Contents; Series Editor Preface; Preface; About the Series Editor; About the Volume Editor; List of Contributors; 1 Advanced Anodes for Solid Oxide Fuel Cells; 1.1 Introduction; 1.2 Ni-YSZ Anode Overview; 1.3 Insights from Real Ni-YSZ Microstructures; 1.4 Mechanistic Understanding of Fuel Oxidation in Ni-Based Anodes; 1.4.1 Hydrogen Oxidation; 1.4.2 Hydrocarbon Fuels in Ni-Based Anodes; 1.5 Poisoning of Ni-Based Anodes; 1.6 Alternative Anode Materials for Direct Hydrocarbon Utilization; 1.6.1 Electronic Conductivity of Alternative Materials
1.6.2 Electrocatalytic Activity of Alternative Anode Materials1.6.3 Poisoning of Alternative Anode Materials; 1.7 Infiltration as an Alternative Fabrication Method; 1.8 Summary and Outlook; References; 2 Advanced Cathodes for Solid Oxide Fuel Cells; 2.1 Introduction; 2.2 Cathodes on Oxygen-Ion-Conducting Electrolytes; 2.2.1 Cathodes on Doped Ceria Electrolytes; 2.2.1.1 Perovskite; 2.2.1.2 Double Perovskites; 2.2.2 Cathodes on Stabilized Zirconia Electrolytes; 2.2.2.1 La1-xSrxMnO3-Based Perovskites; 2.2.2.2 Doped La0.8Sr0.2MnO3; 2.2.2.3 Cobalt-Containing Cathodes with a Buffering Layer
2.3 Cathodes on Proton-Conducting Electrolytes2.3.1 Cobaltite; 2.3.2 Ferrite; 2.3.3 Bismuthate; 2.4 Advanced Techniques in Cathode Fabrication; 2.4.1 Wet Impregnation; 2.4.1.1 Alleviated Phase Reaction; 2.4.1.2 Optimized Microstructure; 2.4.1.3 Matched Thermal Expansion Coefficient; 2.4.1.4 Reduced Cost of Metal Catalyst; 2.4.2 Surfactant-Assisted Assembly Approach; 2.4.3 Spray Pyrolysis; 2.5 Summary; References; 3 Oxide Ion-Conducting Materials for Electrolytes; 3.1 Introduction; 3.2 Oxide Ion Conductivity in Metal Oxide; 3.2.1 Fluorite Oxides; 3.2.1.1 Stabilized ZrO2; 3.2.1.2 Doped CeO2
3.2.2 Perovskite Oxide3.2.3 Perovskite-Related Oxide; 3.2.4 New Class of Oxide Ion-Conducting Oxide; 3.3 Electrolyte Efficiency; 3.4 Strain Effects on Oxide Ion Conductivity; 3.5 Degradation in Conductivity; 3.6 Concluding Remarks; References; 4 Proton-Conducting Materials as Electrolytes for Solid Oxide Fuel Cells; 4.1 Introduction; 4.2 The Principle of Proton-Conducting Oxides; 4.3 Proton-Conducting Materials for Solid Oxide Fuel Cells; 4.3.1 BaCeO3- and BaZrO3-Based Proton-Conducting Oxides; 4.3.2 Other Perovskite-Related Proton-Conducting Oxides
4.3.3 Niobate- and Tantalate-Based Proton-Conducting Oxides4.3.4 Proton Conduction in Typical O2- Ion Conducting Materials; 4.3.5 Other Proton-Conducting Materials; 4.4 Solid Oxide Fuel Cells Based on Proton-Conducting Electrolytes; 4.5 Electrode Materials and Anode Reactions for SOFCs Based on Proton-Conducting Electrolytes; 4.6 Conclusion; References; 5 Metallic Interconnect Materials of Solid Oxide Fuel Cells; 5.1 Introduction; 5.2 Oxidation Behaviors of Candidate Alloys; 5.2.1 Oxidation in Cathode Atmosphere; 5.2.2 Oxidation in Anode Atmosphere; 5.2.3 Oxidation in Dual Atmospheres
5.2.4 Chromium Evaporation from Metallic Interconnects
Record Nr. UNINA-9910808120903321
Weinheim, : Wiley-VCH, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui