Atomically precise nanochemistry / / edited by Rongchao Jin and De-en Jiang |
Pubbl/distr/stampa | Chichester, England : , : John Wiley & Sons Ltd, , [2023] |
Descrizione fisica | 1 online resource (531 pages) |
Disciplina | 620.5 |
Soggetto topico | Nanochemistry |
ISBN |
1-119-78867-6
1-119-78868-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Introduction to Atomically Precise Nanochemistry -- 1.1 Why Atomically Precise Nanochemistry? -- 1.1.1 Motivations from Nanoscience Research -- 1.1.2 Motivations from Inorganic Chemistry Research -- 1.1.3 Motivations from Gas Phase Cluster Research -- 1.1.4 Motivations from Other Areas -- 1.2 Types of Nanoclusters Covered in This Book -- 1.2.1 Atomically Precise Metal Nanoclusters (Au, Ag, Cu, Ni, Rh) -- 1.2.2 Endohedral Fullerenes and Graphene Nanoribbons -- 1.2.3 Zintl Clusters -- 1.2.4 Metal-Oxo Nanoclusters -- 1.3 Some Fundamental Aspects -- 1.3.1 Synthesis and Crystallization -- 1.3.2 Structural and Bonding Patterns -- 1.3.3 Transition from Nonmetallic to Metallic State: Emergence of Plasmon -- 1.3.4 Transition from Metal Complexes to the Cluster State: Emergence of Core -- 1.3.5 Doping and Alloying -- 1.3.6 Redox and Magnetism -- 1.3.7 Energy Gap Engineering -- 1.3.8 Assembly of Atomically Precise Nanoclusters -- 1.4 Some Applications -- 1.4.1 Chemical and Biological Sensing -- 1.4.2 Biomedical Imaging, Drug Delivery, and Therapy -- 1.4.3 Antibacteria -- 1.4.4 Solar Energy Conversion -- 1.4.5 Catalysis -- 1.5 Concluding Remarks -- Acknowledgment -- References -- Chapter 2 Total Synthesis of Thiolate-Protected Noble Metal Nanoclusters -- 2.1 Introduction -- 2.2 Size Engineering of Metal Nanoclusters -- 2.2.1 Size Engineering by Reduction-Growth Strategy -- 2.2.2 Size Engineering by Size Conversion Strategy -- 2.3 Composition Engineering of Metal Nanoclusters -- 2.3.1 Metal Composition Engineering -- 2.3.2 Ligand Composition Engineering -- 2.4 Structure Engineering of Metal Nanoclusters -- 2.4.1 Pseudo-Isomerization -- 2.4.2 Isomerization -- 2.5 Top-Down Etching Reaction of Metal Nanoclusters -- 2.6 Conclusion and Outlooks -- Contributions.
References -- Chapter 3 Thiolated Gold Nanoclusters with Well-Defined Compositions and Structures -- 3.1 Introduction -- 3.2 Synthesis, Purification, and Characterization of Gold Nanoclusters -- 3.2.1 Synthesis -- 3.2.1.1 Synthesis Strategy -- 3.2.1.2 Gold Salt (Complex) Reduction Method -- 3.2.1.3 Ligand Induction Method -- 3.2.1.4 Anti-Galvanic Reaction Method -- 3.2.2 Isolation and Purification -- 3.2.3 Characterization -- 3.3 Structures of Gold Nanoclusters -- 3.3.1 Kernel Structures of Aun(SR)m -- 3.3.2 Kernels Based on Tetrahedral Au4 Units -- 3.3.2.1 Kernels in fcc Structure -- 3.3.2.2 Kernels Arranged in hcp and bcc Fashions -- 3.3.2.3 Kernels in Mirror Symmetry and Dual-Packing (fcc and non-fcc) -- 3.3.2.4 Kernels Based on Icosahedral Au13 Unit -- 3.3.2.5 Kernels with Multiple Shells -- 3.3.3 Protecting Surface Motifs of Aun(SR)m Clusters -- 3.3.3.1 Staple-like Aux(SR)x+1 (x = 1, 2, 3, 4, 8) motifs -- 3.3.3.2 Ring-like Aux(SR)x (x = 4, 5, 6, 8) Motifs -- 3.3.3.3 Giant Au20S3(SR)18 and Au23S4(SR)18 Staple Motifs -- 3.3.3.4 Homo-Kernel Hetero-Staples -- 3.4 Properties and Applications -- 3.4.1 Properties -- 3.4.1.1 Optical Absorption -- 3.4.1.2 Photoluminescence -- 3.4.1.3 Chirality -- 3.4.1.4 Magnetism -- 3.4.2 Applications -- 3.4.2.1 Sensing -- 3.4.2.2 Biological Labeling and Biomedicine -- 3.4.2.3 Catalysis -- 3.5 Conclusion and Future Perspectives -- Acknowledgments -- References -- Chapter 4 Structural Design of Thiolate-Protected Gold Nanoclusters -- 4.1 Introduction -- 4.2 Structural Design Based on "Divide and Protect" Rule -- 4.2.1 A Brief Introduction of the Idea -- 4.2.2 Atomic Structure of Au68(SH)32 -- 4.2.3 Atomic Structure of Au68(SH)34 -- 4.3 Structural Design via Redistributing the "Staple" Motifs on the Known Au Core Structures -- 4.3.1 A Brief Introduction of the Idea -- 4.3.2 Atomic Structure of Au22(SH)17. 4.3.3 Atomic Structures of Au27(SH)20-, Au32(SR)21-, Au34(SR)23-, and Au36(SR)25- -- 4.4 Structural Design via Structural Evolution -- 4.4.1 A Brief Introduction of the Idea -- 4.4.2 Atomic Structures of Au60(SR)36, Au68(SR)40, and Au76(SR)44 -- 4.4.3 Atomic Structure of Au58(SR)30 -- 4.5 Structural Design via Grand Unified Model -- 4.5.1 A Brief Introduction of the Idea -- 4.5.2 Atomic Structures of Hollow Au36(SR)12 and Au42(SR)14 -- 4.5.3 Atomic Structures of Au28(SR)20 -- 4.6 Conclusion and Perspectives -- Acknowledgment -- References -- Chapter 5 Electrocatalysis on Atomically Precise Metal Nanoclusters -- 5.1 Introduction -- 5.1.1 Materials Design Strategy for Electrocatalysis -- 5.1.2 Atomically Precise Metal Nanoclusters as Electrocatalysts -- 5.2 Electrochemistry of Atomically Precise Metal Nanoclusters -- 5.2.1 Size-Dependent Voltammetry -- 5.2.2 Metal-Doped Gold Nanoclusters -- 5.2.3 Metal-Doped Silver Nanoclusters -- 5.3 Electrocatalytic Water Splitting on Atomically Precise Metal Nanoclusters -- 5.3.1 Hydrogen Evolution Reaction: Core Engineering -- 5.3.2 Hydrogen Evolution Reaction: Shell Engineering -- 5.3.3 Hydrogen Evolution Reaction on Ag Nanoclusters -- 5.3.4 Oxygen Evolution Reaction -- 5.4 Electrocatalytic Conversion of CO2 on Atomically Precise Metal Nanoclusters -- 5.4.1 Mechanistic Investigation of CO2RR on Au Nanoclusters -- 5.4.2 Identification of CO2RR Active Sites -- 5.4.3 CO2RR on Cu Nanoclusters -- 5.4.4 Syngas Production on Formulated Metal Nanoclusters -- 5.5 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 6 Atomically Precise Metal Nanoclusters as Electrocatalysts: From Experiment to Computational Insights -- 6.1 Introduction -- 6.2 Factors Affecting the Activity and Selectivity of NCs Electrocatalysis -- 6.2.1 Size Effect -- 6.2.2 Shape Effect -- 6.2.3 Ligands Effect. 6.2.3.1 Different -R Groups in Thiolate Ligands -- 6.2.3.2 Different Types of Ligands -- 6.2.3.3 Ligand-on and -off Effect -- 6.2.4 Charge State Effect -- 6.2.5 Doping and Alloying Effect -- 6.3 Important Electrocatalytic Applications -- 6.3.1 Electrocatalytic Water Splitting -- 6.3.1.1 Water Electrolysis Process -- 6.3.1.2 Cathodic Water Reduction-HER -- 6.3.1.3 Anodic Water Oxidation-OER -- 6.3.2 Oxygen Reduction Reaction (ORR) -- 6.3.3 Electrochemical CO2 Reduction Reaction (CO2RR) -- 6.4 Conclusion and Perspectives -- Acknowledgments -- References -- Chapter 7 Ag Nanoclusters: Synthesis, Structure, and Properties -- 7.1 Introduction -- 7.2 Synthetic Methods -- 7.2.1 One-Pot Synthesis -- 7.2.2 Ligand Exchange -- 7.2.3 Chemical Etching -- 7.2.4 Seeded Growth Method -- 7.3 Structure of Ag NCs -- 7.3.1 Based on Icosahedral Units' Assembly -- 7.3.2 Based on Ag14 Units' Assembly -- 7.3.3 Other Special Ag NCs -- 7.4 Properties of Ag NCs -- 7.4.1 Chirality of Ag NCs -- 7.4.2 Photoluminescence of Ag NCs -- 7.4.3 Catalytic Properties of Ag NCs -- 7.5 Conclusion and Perspectives -- Acknowledgment -- References -- Chapter 8 Atomically Precise Copper Nanoclusters: Syntheses, Structures, and Properties -- 8.1 Introduction -- 8.2 Syntheses of Copper NCs -- 8.2.1 Direct Synthesis -- 8.2.2 Indirect Synthesis: Nanocluster-to-Nanocluster Transformation -- 8.3 Structures of Copper NCs -- 8.3.1 Superatom-like Copper NCs without Hydrides -- 8.3.2 Superatom-like Copper NCs with Hydrides -- 8.3.3 Copper(I) Hydride NCs -- 8.3.3.1 Determination of Hydrides -- 8.3.3.2 Copper(I) Hydride NCs Determined by Single-Crystal Neutron Diffraction -- 8.3.3.3 Copper(I) Hydride NCs Determined by Single-Crystal X-ray Diffraction -- 8.4 Properties -- 8.4.1 Photoluminescence of Copper NCs -- 8.4.1.1 Aggregation-Induced Emission -- 8.4.1.2 Circularly Polarized Luminescence (CPL). 8.4.2 Catalytic Properties of Copper NCs -- 8.4.2.1 Reduction of CO2 -- 8.4.2.2 "Click" Reaction -- 8.4.2.3 Hydrogenation -- 8.4.2.4 Carbonylation Reactions -- 8.4.3 Other Properties -- 8.4.3.1 Hydrogen Storage -- 8.4.3.2 Electronic Devices -- 8.5 Summary Comparison with Gold and Silver NCs -- 8.6 Conclusion and Perspectives -- References -- Chapter 9 Atomically Precise Nanoclusters of Iron, Cobalt, and Nickel: Why Are They So Rare? -- 9.1 Introduction -- 9.2 General Considerations -- 9.3 Synthesis of Ni APNCs -- 9.4 Synthesis of Co APNCs -- 9.5 Attempted Synthesis of Fe APNCs -- 9.6 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 10 Atomically Precise Heterometallic Rhodium Nanoclusters Stabilized by Carbonyl Ligands -- 10.1 Introduction -- 10.1.1 Metal Carbonyl Clusters: A Brief Historical Overview -- 10.1.2 State of the Art on Rhodium Carbonyl Clusters -- 10.2 Synthesis of Heterometallic Rhodium Carbonyl Nanoclusters -- 10.2.1 Synthesis of the [Rh12E(CO)27]n. Family of Nanoclusters -- 10.2.2 Growth of Rhodium Heterometallic Nanoclusters -- 10.2.2.1 Rh-Ge Nanoclusters -- 10.2.2.2 Rh-Sn Nanoclusters -- 10.2.2.3 Rh-Sb Nanoclusters -- 10.2.2.4 Rh-Bi Nanoclusters -- 10.3 Electron-Reservoir Behavior of Heterometallic Rhodium Nanoclusters -- 10.4 Conclusions and Perspectives -- Acknowledgments -- References -- Chapter 11 Endohedral Fullerenes: Atomically Precise Doping Inside Nano Carbon Cages -- 11.1 Introduction -- 11.2 Synthesis of Endohedral Metallofullerenes -- 11.3 Fullerene Structures Tuned by Endohedral Doping -- 11.3.1 Geometry of Empty and Endohedral Fullerene Cage Structures -- 11.3.2 Conventional Endohedral Metallofullerenes -- 11.3.2.1 Mono-Metallofullerens -- 11.3.2.2 Di-Metallofullerenes -- 11.3.3 Clusterfullerenes -- 11.3.3.1 Nitride Clusterfullerenes -- 11.3.3.2 Carbide Clusterfullerenes. 11.3.3.3 Oxide and Sulfide Clusterfullerenes. |
Record Nr. | UNINA-9910684597403321 |
Chichester, England : , : John Wiley & Sons Ltd, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Graphene chemistry [[electronic resource] ] : theoretical perspectives / / edited by De-en Jiang and Zhongfang Chen |
Pubbl/distr/stampa | Chichester, West Sussex, U.K., : John Wiley & Sons Inc., 2013 |
Descrizione fisica | 1 online resource (497 p.) |
Disciplina | 546/.68142 |
Altri autori (Persone) |
JiangDe-en <1975->
ChenZhongfang <1971-> |
Soggetto topico | Graphene |
ISBN |
1-118-69128-8
1-118-69131-8 1-118-69129-6 |
Classificazione | TEC021000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Graphene Chemistry; Contents; List of Contributors; Preface; Acknowledgements; 1 Introduction; 2 Intrinsic Magnetism in Edge-Reconstructed Zigzag Graphene Nanoribbons; 2.1 Methodology; 2.1.1 Effective Valence Bond Model; 2.1.2 Density Matrix Renormalization Group Method; 2.1.3 Density Functional Theory Calculations; 2.2 Polyacene; 2.3 Polyazulene; 2.4 Edge-Reconstructed Graphene; 2.4.1 Energy Gap; 2.4.2 Frontier Molecular Orbitals; 2.4.3 Projected Density of States; 2.4.4 Spin Density in the Triplet State; 2.5 Conclusion; Acknowledgments; References
3 Understanding Aromaticity of Graphene and Graphene Nanoribbons by the Clar Sextet Rule 3.1 Introduction; 3.1.1 Aromaticity and Clar Theory; 3.1.2 Previous Studies of Carbon Nanotubes; 3.2 Armchair Graphene Nanoribbons; 3.2.1 The Clar Structure of Armchair Graphene Nanoribbons; 3.2.2 Aromaticity of Armchair Graphene Nanoribbons and Band Gap Periodicity; 3.3 Zigzag Graphene Nanoribbons; 3.3.1 Clar Formulas of Zigzag Graphene Nanoribbons; 3.3.2 Reactivity of Zigzag Graphene Nanoribbons; 3.4 Aromaticity of Graphene; 3.5 Perspectives; Acknowledgements; References 4 Physical Properties of Graphene Nanoribbons: Insights from First-Principles Studies 4.1 Introduction; 4.2 Electronic Properties of Graphene Nanoribbons; 4.2.1 Zigzag Graphene Nanoribbons; 4.2.2 Armchair Graphene Nanoribbons; 4.2.3 Graphene Nanoribbons with Finite Length; 4.2.4 Surface Chemical Adsorption; 4.3 Mechanical and Electromechanical Properties of GNRs; 4.4 Summary; Acknowledgements; References; 5 Cutting Graphitic Materials: A Promising Way to Prepare Graphene Nanoribbons; 5.1 Introduction; 5.2 Oxidative Cutting of Graphene Sheets; 5.2.1 Cutting Mechanisms 5.2.2 Controllable Cutting 5.3 Unzipping Carbon Nanotubes; 5.3.1 Unzipping Mechanisms Based on Atomic Oxygen; 5.3.2 Unzipping Mechanisms Based on Oxygen Pairs; 5.4 Beyond Oxidative Cutting; 5.4.1 Metal Nanoparticle Catalyzed Cutting; 5.4.2 Cutting by Fluorination; 5.5 Summary; References; 6 Properties of Nanographenes; 6.1 Introduction; 6.2 Synthesis; 6.3 Computation; 6.4 Geometry of Zigzag-Edged Hexangulenes; 6.5 Geometry of Armchair-Edged Hexangulenes; 6.6 Geometry of Zigzag-Edged Triangulenes; 6.7 Magnetism of Zigzag-Edged Hexangulenes; 6.8 Magnetism of Zigzag-Edged Triangulenes 6.9 Chimeric Magnetism 6.10 Magnetism of Oligocenes, Bisanthene-Homologs, Squares and Rectangles; 6.10.1 Oligocene Series: C4m+2H2m+4 (na = 1; m = 2, 3, 4 . . .); 6.10.2 Bisanthene Series: C8m+4H2m+8 (na = 3; m = 2, 3, 4 . . .); 6.10.3 Square and Rectangular Nano-Graphenes: C8m+4H2m+8 (m = 2, 3, 4 . . .); 6.11 Concluding Remarks; Acknowledgment; References; 7 Porous Graphene and Nanomeshes; 7.1 Introduction; 7.1.1 Graphene-Based Nanomeshes; 7.1.2 Graphene-Like Polymers; 7.1.3 Other Relevant Subjects; 7.1.3.1 Isotope Separation; 7.1.3.2 Van der Waals Correction for Density Functional Theory 7.1.3.3 Potential Energy Surfaces for Hindered Molecular Motions Within the Narrow Pores |
Record Nr. | UNINA-9910139028503321 |
Chichester, West Sussex, U.K., : John Wiley & Sons Inc., 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Graphene chemistry : theoretical perspectives / / edited by De-en Jiang and Zhongfang Chen |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Chichester, West Sussex, U.K., : John Wiley & Sons Inc., 2013 |
Descrizione fisica | 1 online resource (497 p.) |
Disciplina | 546/.68142 |
Altri autori (Persone) |
JiangDe-en <1975->
ChenZhongfang <1971-> |
Soggetto topico | Graphene |
ISBN |
1-118-69128-8
1-118-69131-8 1-118-69129-6 |
Classificazione | TEC021000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Graphene Chemistry; Contents; List of Contributors; Preface; Acknowledgements; 1 Introduction; 2 Intrinsic Magnetism in Edge-Reconstructed Zigzag Graphene Nanoribbons; 2.1 Methodology; 2.1.1 Effective Valence Bond Model; 2.1.2 Density Matrix Renormalization Group Method; 2.1.3 Density Functional Theory Calculations; 2.2 Polyacene; 2.3 Polyazulene; 2.4 Edge-Reconstructed Graphene; 2.4.1 Energy Gap; 2.4.2 Frontier Molecular Orbitals; 2.4.3 Projected Density of States; 2.4.4 Spin Density in the Triplet State; 2.5 Conclusion; Acknowledgments; References
3 Understanding Aromaticity of Graphene and Graphene Nanoribbons by the Clar Sextet Rule 3.1 Introduction; 3.1.1 Aromaticity and Clar Theory; 3.1.2 Previous Studies of Carbon Nanotubes; 3.2 Armchair Graphene Nanoribbons; 3.2.1 The Clar Structure of Armchair Graphene Nanoribbons; 3.2.2 Aromaticity of Armchair Graphene Nanoribbons and Band Gap Periodicity; 3.3 Zigzag Graphene Nanoribbons; 3.3.1 Clar Formulas of Zigzag Graphene Nanoribbons; 3.3.2 Reactivity of Zigzag Graphene Nanoribbons; 3.4 Aromaticity of Graphene; 3.5 Perspectives; Acknowledgements; References 4 Physical Properties of Graphene Nanoribbons: Insights from First-Principles Studies 4.1 Introduction; 4.2 Electronic Properties of Graphene Nanoribbons; 4.2.1 Zigzag Graphene Nanoribbons; 4.2.2 Armchair Graphene Nanoribbons; 4.2.3 Graphene Nanoribbons with Finite Length; 4.2.4 Surface Chemical Adsorption; 4.3 Mechanical and Electromechanical Properties of GNRs; 4.4 Summary; Acknowledgements; References; 5 Cutting Graphitic Materials: A Promising Way to Prepare Graphene Nanoribbons; 5.1 Introduction; 5.2 Oxidative Cutting of Graphene Sheets; 5.2.1 Cutting Mechanisms 5.2.2 Controllable Cutting 5.3 Unzipping Carbon Nanotubes; 5.3.1 Unzipping Mechanisms Based on Atomic Oxygen; 5.3.2 Unzipping Mechanisms Based on Oxygen Pairs; 5.4 Beyond Oxidative Cutting; 5.4.1 Metal Nanoparticle Catalyzed Cutting; 5.4.2 Cutting by Fluorination; 5.5 Summary; References; 6 Properties of Nanographenes; 6.1 Introduction; 6.2 Synthesis; 6.3 Computation; 6.4 Geometry of Zigzag-Edged Hexangulenes; 6.5 Geometry of Armchair-Edged Hexangulenes; 6.6 Geometry of Zigzag-Edged Triangulenes; 6.7 Magnetism of Zigzag-Edged Hexangulenes; 6.8 Magnetism of Zigzag-Edged Triangulenes 6.9 Chimeric Magnetism 6.10 Magnetism of Oligocenes, Bisanthene-Homologs, Squares and Rectangles; 6.10.1 Oligocene Series: C4m+2H2m+4 (na = 1; m = 2, 3, 4 . . .); 6.10.2 Bisanthene Series: C8m+4H2m+8 (na = 3; m = 2, 3, 4 . . .); 6.10.3 Square and Rectangular Nano-Graphenes: C8m+4H2m+8 (m = 2, 3, 4 . . .); 6.11 Concluding Remarks; Acknowledgment; References; 7 Porous Graphene and Nanomeshes; 7.1 Introduction; 7.1.1 Graphene-Based Nanomeshes; 7.1.2 Graphene-Like Polymers; 7.1.3 Other Relevant Subjects; 7.1.3.1 Isotope Separation; 7.1.3.2 Van der Waals Correction for Density Functional Theory 7.1.3.3 Potential Energy Surfaces for Hindered Molecular Motions Within the Narrow Pores |
Record Nr. | UNINA-9910822184303321 |
Chichester, West Sussex, U.K., : John Wiley & Sons Inc., 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Materials for carbon capture / / edited by De-en Jiang, Shannon M. Mahurin, Sheng Dai |
Pubbl/distr/stampa | Hoboken, New Jersey ; ; West Sussex, England : , : Wiley, , [2020] |
Descrizione fisica | 1 online resource (376 pages) |
Disciplina | 577.144 |
Soggetto topico | Carbon sequestration |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-09120-9
1-5231-3309-0 1-119-09119-5 1-119-09121-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910555197803321 |
Hoboken, New Jersey ; ; West Sussex, England : , : Wiley, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Materials for carbon capture / / edited by De-en Jiang, Shannon M. Mahurin, Sheng Dai |
Pubbl/distr/stampa | Hoboken, New Jersey ; ; West Sussex, England : , : Wiley, , [2020] |
Descrizione fisica | 1 online resource (376 pages) |
Disciplina | 577.144 |
Soggetto topico | Carbon sequestration |
ISBN |
1-119-09120-9
1-5231-3309-0 1-119-09119-5 1-119-09121-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction / De-en Jiang, Shannon M. Mahurin, and Sheng Dai -- CO₂ capture and separation of metal-organic frameworks / Xueying Ge and Shengqian Ma -- Porous carbon materials : designed synthesis and CO₂ capture / Xiang-Qian Zhang and An-Hui Lu -- Porous aromatic frameworks for carbon dioxide capture / Teng Ben and Shilun Qiu -- Virtual screening of materials for carbon capture / Aman Jain, Ravichandar Babarao, and Aaron W. Thornton -- Ultrathin membranes for gas separation / Ziqi Tian, Song Wang, Sheng Dai, and De-en Jiang -- Polymeric membranes / Jason E. Bara and W. Jeffrey Horne -- Carbon membranes for CO₂ separation / Kuan Huang and Sheng Dai -- Composite materials for carbon captures / Sunee Wongchitphimon, Siew Siang Lee, Chong Yang Chuah, Rong Wang, and Tae-Hyun Bae -- Poly(amidoamine) dendrimers for carbon capture / Ikuo Taniguchi -- Ionic liquids for chemisorption of CO₂ / Mingguang Pan and Congmin Wang -- Ionic liquid-based membranes / Chi-Linh Do-Thanh, Jennifer Schott, Sheng Dai, and Shannon M. Mahurin. |
Record Nr. | UNINA-9910830846503321 |
Hoboken, New Jersey ; ; West Sussex, England : , : Wiley, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|