top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Large sample techniques for statistics / / Jiming Jiang
Large sample techniques for statistics / / Jiming Jiang
Autore Jiang Jiming
Edizione [2nd ed.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (689 pages)
Disciplina 519.52
Collana Springer Texts in Statistics
Soggetto topico Mathematical statistics
Sampling (Statistics)
Mostreig (Estadística)
Soggetto genere / forma Llibres electrònics
ISBN 9783030916954
9783030916947
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- 1 The ε-δ Arguments -- 1.1 Introduction -- 1.2 Getting used to the ε-δ arguments -- 1.3 More examples -- 1.4 Case study: Consistency of MLE in the i.i.d. case -- 1.5 Some useful results -- 1.5.1 Infinite sequence -- 1.5.2 Infinite series -- 1.5.3 Topology -- 1.5.4 Continuity, differentiation, and integration -- 1.6 Exercises -- 2 Modes of Convergence -- 2.1 Introduction -- 2.2 Convergence in probability -- 2.3 Almost sure convergence -- 2.4 Convergence in distribution -- 2.5 Lp convergence and related topics -- 2.6 Case study: χ2-test -- 2.7 Summary and additional results -- 2.8 Exercises -- 3 Big O, Small o, and the Unspecified c -- 3.1 Introduction -- 3.2 Big O and small o for sequences and functions -- 3.3 Big O and small o for vectors and matrices -- 3.4 Big O and small o for random quantities -- 3.5 The unspecified c and other similar methods -- 3.6 Case study: The baseball problem -- 3.7 Case study: Likelihood ratio for a clustering problem -- 3.8 Exercises -- 4 Asymptotic Expansions -- 4.1 Introduction -- 4.2 Taylor expansion -- 4.3 Edgeworth expansion -- method of formal derivation -- 4.4 Other related expansions -- 4.4.1 Fourier series expansion -- 4.4.2 Cornish-Fisher expansion -- 4.4.3 Two time series expansions -- 4.5 Some elementary expansions -- 4.6 Laplace approximation -- 4.7 Case study: Asymptotic distribution of the MLE -- 4.8 Case study: The Prasad-Rao method -- 4.9 Exercises -- 5 Inequalities -- 5.1 Introduction -- 5.2 Numerical inequalities -- 5.2.1 The convex function inequality -- 5.2.2 Hölder's and related inequalities -- 5.2.3 Monotone functions and related inequalities -- 5.3 Matrix inequalities -- 5.3.1 Nonnegative definite matrices -- 5.3.2 Characteristics of matrices -- 5.4 Integral/moment inequalities -- 5.5 Probability inequalities.
5.6 Case study: Some problems on existence of moments -- 5.7 Case study: A variance inequality -- 5.8 Exercises -- 6 Sums of Independent Random Variables -- 6.1 Introduction -- 6.2 The weak law of large numbers -- 6.3 The strong law of large numbers -- 6.4 The central limit theorem -- 6.5 The law of the iterated logarithm -- 6.6 Further results -- 6.6.1 Invariance principles in CLT and LIL -- 6.6.2 Large deviations -- 6.7 Case study: The least squares estimators -- 6.8 Exercises -- 7 Empirical Processes -- 7.1 Introduction -- 7.2 Glivenko-Cantelli theorem and statistical functionals -- 7.3 Weak convergence of empirical processes -- 7.4 LIL and strong approximation -- 7.5 Bounds and large deviations -- 7.6 Non-i.i.d. observations -- 7.7 Empirical processes indexed by functions -- 7.8 Case study: Estimation of ROC curve and ODC -- 7.9 Exercises -- 8 Martingales -- 8.1 Introduction -- 8.2 Examples and simple properties -- 8.3 Two important theorems of martingales -- 8.3.1 The optional stopping theorem -- 8.3.2 The martingale convergence theorem -- 8.4 Martingale laws of large numbers -- 8.4.1 A weak law of large numbers -- 8.4.2 Some strong laws of large numbers -- 8.5 A martingale central limit theorem and related topic -- 8.6 Convergence rate in SLLN and LIL -- 8.7 Invariance principles for martingales -- 8.8 Case study: CLTs for quadratic forms -- 8.9 Case study: Martingale approximation -- 8.10 Exercises -- 9 Time and Spatial Series -- 9.1 Introduction -- 9.2 Autocovariances and autocorrelations -- 9.3 The information criteria -- 9.4 ARMA model identification -- 9.5 Strong limit theorems for i.i.d. spatial series -- 9.6 Two-parameter martingale differences -- 9.7 Sample ACV and ACR for spatial series -- 9.8 Case study: Spatial AR models -- 9.9 Exercises -- 10 Stochastic Processes -- 10.1 Introduction -- 10.2 Markov chains -- 10.3 Poisson processes.
10.4 Renewal theory -- 10.5 Brownian motion -- 10.6 Stochastic integrals and diffusions -- 10.7 Case study: GARCH models and financial SDE -- 10.8 Exercises -- 11 Nonparametric Statistics -- 11.1 Introduction -- 11.2 Some classical nonparametric tests -- 11.3 Asymptotic relative efficiency -- 11.4 Goodness-of-fit tests -- 11.5 U-statistics -- 11.6 Density estimation -- 11.7 Exercises -- 12 Mixed Effects Models -- 12.1 Introduction -- 12.2 REML: Restricted maximum likelihood -- 12.3 Linear mixed model diagnostics -- 12.4 Inference about GLMM -- 12.5 Mixed model selection -- 12.6 Exercises -- 13 Small-Area Estimation -- 13.1 Introduction -- 13.2 Empirical best prediction with binary data -- 13.3 The Fay-Herriot model -- 13.4 Nonparametric small-area estimation -- 13.5 Model selection for small-area estimation -- 13.6 Exercises -- 14 Jackknife and Bootstrap -- 14.1 Introduction -- 14.2 The jackknife -- 14.3 Jackknifing the MSPE of EBP -- 14.4 The bootstrap -- 14.5 Bootstrapping time series -- 14.6 Bootstrapping mixed models -- 14.7 Exercises -- 15 Markov-Chain Monte Carlo -- 15.1 Introduction -- 15.2 The Gibbs sampler -- 15.3 The Metropolis-Hastings algorithm -- 15.4 Monte Carlo EM algorithm -- 15.5 Convergence rates of Gibbs samplers -- 15.6 Exercises -- 16 Random Matrix Theory -- 16.1 Introduction -- 16.2 Fundamental theorems of RMT -- 16.3 Large covariance matrices -- 16.4 High-dimensional linear models -- 16.5 Genome-wide association study -- 16.6 Application to time series -- 16.7 Exercises -- Appendix A -- A.1 Matrix algebra -- A.1.1 Numbers associated with a matrix -- A.1.2 Inverse of a matrix -- A.1.3 Kronecker products -- A.1.4 Matrix differentiation -- A.1.5 Projection -- A.1.6 Decompositions of matrices and eigenvalues -- A.2 Measure and probability -- A.2.1 Measures -- A.2.2 Measurable functions -- A.2.3 Integration.
A.2.4 Distributions and random variables -- A.2.5 Conditional expectations -- A.2.6 Conditional distributions -- A.3 Some results in statistics -- A.3.1 The multivariate normal distribution -- A.3.2 Maximum likelihood -- A.3.3 Exponential family and generalized linear models -- A.3.4 Bayesian inference -- A.3.5 Stationary processes -- A.4 List of notation and abbreviations -- References -- Index.
Record Nr. UNISA-996472039303316
Jiang Jiming  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Large Sample Techniques for Statistics / / by Jiming Jiang
Large Sample Techniques for Statistics / / by Jiming Jiang
Autore Jiang Jiming
Edizione [2nd ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (689 pages)
Disciplina 519.52
519.2
Collana Springer Texts in Statistics
Soggetto topico Probabilities
Statistics
Probability Theory
Statistical Theory and Methods
ISBN 9783030916954
9783030916947
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. The -δ Arguments -- Chapter 2. Modes of Convergence -- Chapter 3. Big O, Small o, and the Unspecified c -- Chapter 4. Asymptotic Expansions -- Chapter 5. Inequalities -- Chapter 6. Sums of Independent Random Variables -- Chapter 7. Empirical Processes -- Chapter 8. Martingales -- Chapter 9. Time and Spatial Series -- Chapter 10. Stochastic Processes -- Chapter 11. Nonparametric Statistics -- Chapter 12. Mixed Effects Models -- Chapter 13. Small-Area Estimation -- Chapter 14. Jackknife and Bootstrap -- Chapter 15. Markov-Chain Monte Carlo -- Chapter 16. Random Matrix Theory.
Record Nr. UNINA-9910559398903321
Jiang Jiming  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Linear and generalized linear mixed models and their applications / / Jiming Jiang and Thuan Nguyen
Linear and generalized linear mixed models and their applications / / Jiming Jiang and Thuan Nguyen
Autore Jiang Jiming
Edizione [Second edition.]
Pubbl/distr/stampa New York, New York ; ; London, England : , : Springer, , [2021]
Descrizione fisica 1 online resource (352 pages) : illustrations
Disciplina 519.5
Collana Springer Series in Statistics
Soggetto topico Mathematical statistics
Linear models (Statistics)
Estadística matemàtica
Models lineals (Estadística)
Soggetto genere / forma Llibres electrònics
ISBN 1-0716-1282-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- List of Notations -- 1 Linear Mixed Models: Part I -- 1.1 Introduction -- 1.1.1 Effect of Air Pollution Episodes on Children -- 1.1.2 Genome-Wide Association Study -- 1.1.3 Small Area Estimation of Income -- 1.2 Types of Linear Mixed Models -- 1.2.1 Gaussian Mixed Models -- 1.2.1.1 Mixed ANOVA Model -- 1.2.1.2 Longitudinal Model -- 1.2.1.3 Marginal Model -- 1.2.1.4 Hierarchical Models -- 1.2.2 Non-Gaussian Linear Mixed Models -- 1.2.2.1 Mixed ANOVA Model -- 1.2.2.2 Longitudinal Model -- 1.2.2.3 Marginal Model -- 1.3 Estimation in Gaussian Mixed Models -- 1.3.1 Maximum Likelihood -- 1.3.1.1 Point Estimation -- 1.3.1.2 Asymptotic Covariance Matrix -- 1.3.2 Restricted Maximum Likelihood (REML) -- 1.3.2.1 Point Estimation -- 1.3.2.2 Historical Note -- 1.3.2.3 Asymptotic Covariance Matrix -- 1.4 Estimation in Non-Gaussian Linear Mixed Models -- 1.4.1 Quasi-Likelihood Method -- 1.4.2 Partially Observed Information -- 1.4.3 Iterative Weighted Least Squares -- 1.4.3.1 Balanced Case -- 1.4.3.2 Unbalanced Case -- 1.4.4 Jackknife Method -- 1.4.5 High-Dimensional Misspecified Mixed Model Analysis -- 1.5 Other Methods of Estimation -- 1.5.1 Analysis of Variance Estimation -- 1.5.1.1 Balanced Data -- 1.5.1.2 Unbalanced Data -- 1.5.2 Minimum Norm Quadratic Unbiased Estimation -- 1.6 Notes on Computation and Software -- 1.6.1 Notes on Computation -- 1.6.1.1 Computation of the ML and REML Estimators -- 1.6.1.2 The EM Algorithm -- 1.6.2 Notes on Software -- 1.7 Real-Life Data Examples -- 1.7.1 Analysis of Birth Weights of Lambs -- 1.7.2 Analysis of Hip Replacements Data -- 1.7.3 Analyses of High-Dimensional GWAS Data -- 1.8 Further Results and Technical Notes -- 1.8.1 A Note on Finding the MLE -- 1.8.2 Note on Matrix X Not Being Full Rank -- 1.8.3 Asymptotic Behavior of ML and REML Estimators in Non-Gaussian Mixed ANOVA Models.
1.8.4 Truncated Estimator -- 1.8.5 POQUIM in General -- 1.9 Exercises -- 2 Linear Mixed Models: Part II -- 2.1 Tests in Linear Mixed Models -- 2.1.1 Tests in Gaussian Mixed Models -- 2.1.1.1 Exact Tests -- 2.1.1.2 Optimal Tests -- 2.1.1.3 Likelihood-Ratio Tests -- 2.1.2 Tests in Non-Gaussian Linear Mixed Models -- 2.1.2.1 Empirical Method of Moments -- 2.1.2.2 Partially Observed Information -- 2.1.2.3 Jackknife Method -- 2.1.2.4 Robust Versions of Classical Tests -- 2.2 Confidence Intervals in Linear Mixed Models -- 2.2.1 Confidence Intervals in Gaussian Mixed Models -- 2.2.1.1 Exact Confidence Intervals for Variance Components -- 2.2.1.2 Approximate Confidence Intervals for Variance Components -- 2.2.1.3 Simultaneous Confidence Intervals -- 2.2.1.4 Confidence Intervals for Fixed Effects -- 2.2.2 Confidence Intervals in Non-Gaussian Linear MixedModels -- 2.2.2.1 ANOVA Models -- 2.2.2.2 Longitudinal Models -- 2.3 Prediction -- 2.3.1 Best Prediction -- 2.3.2 Best Linear Unbiased Prediction -- 2.3.2.1 Empirical BLUP -- 2.3.3 Observed Best Prediction -- 2.3.4 Prediction of Future Observation -- 2.3.4.1 Distribution-Free Prediction Intervals -- 2.3.4.2 Standard Linear Mixed Models -- 2.3.4.3 Nonstandard Linear Mixed Models -- 2.3.4.4 A Simulated Example -- 2.3.5 Classified Mixed Model Prediction -- 2.3.5.1 CMMP of Mixed Effects -- 2.3.5.2 CMMP of Future Observation -- 2.3.5.3 CMMP When the Actual Match Does Not Exist -- 2.3.5.4 Empirical Demonstration -- 2.3.5.5 Incorporating Covariate Information in Matching -- 2.3.5.6 More Empirical Demonstration -- 2.3.5.7 Prediction Interval -- 2.4 Model Checking and Selection -- 2.4.1 Model Diagnostics -- 2.4.1.1 Diagnostic Plots -- 2.4.1.2 Goodness-of-Fit Tests -- 2.4.2 Information Criteria -- 2.4.2.1 Selection with Fixed Random Factors -- 2.4.2.2 Selection with Random Factors -- 2.4.3 The Fence Methods.
2.4.3.1 The Effective Sample Size -- 2.4.3.2 The Dimension of a Model -- 2.4.3.3 Unknown Distribution -- 2.4.3.4 Finite-Sample Performance and the Effect of a Constant -- 2.4.3.5 Criterion of Optimality -- 2.4.4 Shrinkage Mixed Model Selection -- 2.5 Bayesian Inference -- 2.5.1 Inference About Variance Components -- 2.5.2 Inference About Fixed and Random Effects -- 2.6 Real-Life Data Examples -- 2.6.1 Reliability of Environmental Sampling -- 2.6.2 Hospital Data -- 2.6.3 Baseball Example -- 2.6.4 Iowa Crops Data -- 2.6.5 Analysis of High-Speed Network Data -- 2.7 Further Results and Technical Notes -- 2.7.1 Robust Versions of Classical Tests -- 2.7.2 Existence of Moments of ML/REML Estimators -- 2.7.3 Existence of Moments of EBLUE and EBLUP -- 2.7.4 The Definition of Σn(θ) in Sect.2.4.1.2 -- 2.8 Exercises -- 3 Generalized Linear Mixed Models: Part I -- 3.1 Introduction -- 3.2 Generalized Linear Mixed Models -- 3.3 Real-Life Data Examples -- 3.3.1 Salamander Mating Experiments -- 3.3.2 A Log-Linear Mixed Model for Seizure Counts -- 3.3.3 Small Area Estimation of Mammography Rates -- 3.4 Likelihood Function Under GLMM -- 3.5 Approximate Inference -- 3.5.1 Laplace Approximation -- 3.5.2 Penalized Quasi-likelihood Estimation -- 3.5.2.1 Derivation of PQL -- 3.5.2.2 Computational Procedures -- 3.5.2.3 Variance Components -- 3.5.2.4 Inconsistency of PQL Estimators -- 3.5.3 Tests of Zero Variance Components -- 3.5.4 Maximum Hierarchical Likelihood -- 3.5.5 Note on Existing Software -- 3.6 GLMM Prediction -- 3.6.1 Joint Estimation of Fixed and Random Effects -- 3.6.1.1 Maximum a Posterior -- 3.6.1.2 Computation of MPE -- 3.6.1.3 Penalized Generalized WLS -- 3.6.1.4 Maximum Conditional Likelihood -- 3.6.1.5 Quadratic Inference Function -- 3.6.2 Empirical Best Prediction -- 3.6.2.1 Empirical Best Prediction Under GLMM -- 3.6.2.2 Model-Assisted EBP.
3.6.3 A Simulated Example -- 3.6.4 Classified Mixed Logistic Model Prediction -- 3.6.5 Best Look-Alike Prediction -- 3.6.5.1 BLAP of a Discrete/Categorical Random Variable -- 3.6.5.2 BLAP of a Zero-Inflated Random Variable -- 3.7 Real-Life Data Example Follow-Ups and More -- 3.7.1 Salamander Mating Data -- 3.7.2 Seizure Count Data -- 3.7.3 Mammography Rates -- 3.7.4 Analysis of ECMO Data -- 3.7.4.1 Prediction of Mixed Effects of Interest -- 3.8 Further Results and Technical Notes -- 3.8.1 More on NLGSA -- 3.8.2 Asymptotic Properties of PQWLS Estimators -- 3.8.3 MSPE of EBP -- 3.8.4 MSPE of the Model-Assisted EBP -- 3.9 Exercises -- 4 Generalized Linear Mixed Models: Part II -- 4.1 Likelihood-Based Inference -- 4.1.1 A Monte Carlo EM Algorithm for Binary Data -- 4.1.1.1 The EM Algorithm -- 4.1.1.2 Monte Carlo EM via Gibbs Sampler -- 4.1.2 Extensions -- 4.1.2.1 MCEM with Metropolis-Hastings Algorithm -- 4.1.2.2 Monte Carlo Newton-Raphson Procedure -- 4.1.2.3 Simulated ML -- 4.1.3 MCEM with i.i.d. Sampling -- 4.1.3.1 Importance Sampling -- 4.1.3.2 Rejection Sampling -- 4.1.4 Automation -- 4.1.5 Data Cloning -- 4.1.6 Maximization by Parts -- 4.1.7 Bayesian Inference -- 4.2 Estimating Equations -- 4.2.1 Generalized Estimating Equations (GEE) -- 4.2.2 Iterative Estimating Equations -- 4.2.3 Method of Simulated Moments -- 4.2.4 Robust Estimation in GLMM -- 4.3 GLMM Diagnostics and Selection -- 4.3.1 A Goodness-of-Fit Test for GLMM Diagnostics -- 4.3.1.1 Tailoring -- 4.3.1.2 χ2-Test -- 4.3.1.3 Application to GLMM -- 4.3.2 Fence Methods for GLMM Selection -- 4.3.2.1 Maximum Likelihood (ML) Model Selection -- 4.3.2.2 Mean and Variance/Covariance (MVC) Model Selection -- 4.3.2.3 Extended GLMM Selection -- 4.3.3 Two Examples with Simulation -- 4.3.3.1 A Simulated Example of GLMM Diagnostics -- 4.3.3.2 A Simulated Example of GLMM Selection.
4.4 Real-Life Data Examples -- 4.4.1 Fetal Mortality in Mouse Litters -- 4.4.2 Analysis of Gc Genotype Data -- 4.4.3 Salamander Mating Experiments Revisited -- 4.4.4 The National Health Interview Survey -- 4.5 Further Results and Technical Notes -- 4.5.1 Proof of Theorem 4.3 -- 4.5.2 Linear Convergence and Asymptotic Properties of IEE -- 4.5.2.1 Linear Convergence -- 4.5.2.2 Asymptotic Behavior of IEEE -- 4.5.3 Incorporating Informative Missing Data in IEE -- 4.5.4 Consistency of MSM Estimator -- 4.5.5 Asymptotic Properties of First- and Second-StepEstimators -- 4.5.6 Further Details Regarding the Fence Methods -- 4.5.6.1 Estimation of σM,M* in Case of Clustered Observations -- 4.5.6.2 Consistency of the Fence -- 4.5.7 Consistency of MLE in GLMM with Crossed Random Effects -- 4.6 Exercises -- A Matrix Algebra -- A.1 Kronecker Products -- A.2 Matrix Differentiation -- A.3 Projection and Related Results -- A.4 Inverse and Generalized Inverse -- A.5 Decompositions of Matrices -- A.6 The Eigenvalue Perturbation Theory -- B Some Results in Statistics -- B.1 Multivariate Normal Distribution -- B.2 Quadratic Forms -- B.3 OP and oP -- B.4 Convolution -- B.5 Exponential Family and Generalized Linear Models -- References -- Index.
Record Nr. UNISA-996466561103316
Jiang Jiming  
New York, New York ; ; London, England : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Linear and Generalized Linear Mixed Models and Their Applications / / by Jiming Jiang, Thuan Nguyen
Linear and Generalized Linear Mixed Models and Their Applications / / by Jiming Jiang, Thuan Nguyen
Autore Jiang Jiming
Edizione [2nd ed. 2021.]
Pubbl/distr/stampa New York, NY : , : Springer New York : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (352 pages) : illustrations
Disciplina 519.5
Collana Springer Series in Statistics
Soggetto topico Biometry
Probabilities
Statistics
Public health
Numerical analysis
Population genetics
Biostatistics
Probability Theory
Statistical Theory and Methods
Public Health
Numerical Analysis
Population Genetics
ISBN 9781071612828
1071612824
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Linear Mixed Models: Part I -- 2. Linear Mixed Models: Part II -- 3. Generalized Linear Mixed Models: Part I -- 4. Generalized Linear Mixed Models: Part II.
Record Nr. UNINA-9910484963903321
Jiang Jiming  
New York, NY : , : Springer New York : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui