top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The Riesz transform of codimension smaller than one and the Wolff energy / / Benjamin Jaye [and three others]
The Riesz transform of codimension smaller than one and the Wolff energy / / Benjamin Jaye [and three others]
Autore Jaye Benjamin <1984->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [2020]
Descrizione fisica 1 online resource (110 pages)
Disciplina 515.73
Collana Memoirs of the American Mathematical Society
Soggetto topico Harmonic analysis
Calderón-Zygmund operator
Laplacian operator
Lipschitz spaces
Potential theory (Mathematics)
Soggetto genere / forma Electronic books.
ISBN 1-4704-6249-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910480440003321
Jaye Benjamin <1984->  
Providence, Rhode Island : , : American Mathematical Society, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The Riesz transform of codimension smaller than one and the Wolff energy / / Benjamin Jaye [and three others]
The Riesz transform of codimension smaller than one and the Wolff energy / / Benjamin Jaye [and three others]
Autore Jaye Benjamin <1984->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [2020]
Descrizione fisica 1 online resource (110 pages)
Disciplina 515.73
Collana Memoirs of the American Mathematical Society
Soggetto topico Harmonic analysis
Calderón-Zygmund operator
Laplacian operator
Lipschitz spaces
Potential theory (Mathematics)
ISBN 1-4704-6249-4
Classificazione 42B3731B15
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The general scheme : finding a large Lipschitz oscillation coefficient -- Upward and downward domination -- Preliminary results regarding reflectionless measures -- The basic energy estimates -- Blow up I : The density drop -- The choice of the shell -- Blow up II : doing away with [epsilon] -- Localization around the shell -- The scheme -- Suppressed kernels -- Step I : Calderón-Zygmund theory (from a distribution to an Lp-function) -- Step II : The smoothing operation -- Step III : The variational argument -- Contradiction.
Record Nr. UNINA-9910794335703321
Jaye Benjamin <1984->  
Providence, Rhode Island : , : American Mathematical Society, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The Riesz transform of codimension smaller than one and the Wolff energy / / Benjamin Jaye [and three others]
The Riesz transform of codimension smaller than one and the Wolff energy / / Benjamin Jaye [and three others]
Autore Jaye Benjamin <1984->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , [2020]
Descrizione fisica 1 online resource (110 pages)
Disciplina 515.73
Collana Memoirs of the American Mathematical Society
Soggetto topico Harmonic analysis
Calderón-Zygmund operator
Laplacian operator
Lipschitz spaces
Potential theory (Mathematics)
ISBN 1-4704-6249-4
Classificazione 42B3731B15
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The general scheme : finding a large Lipschitz oscillation coefficient -- Upward and downward domination -- Preliminary results regarding reflectionless measures -- The basic energy estimates -- Blow up I : The density drop -- The choice of the shell -- Blow up II : doing away with [epsilon] -- Localization around the shell -- The scheme -- Suppressed kernels -- Step I : Calderón-Zygmund theory (from a distribution to an Lp-function) -- Step II : The smoothing operation -- Step III : The variational argument -- Contradiction.
Record Nr. UNINA-9910813548203321
Jaye Benjamin <1984->  
Providence, Rhode Island : , : American Mathematical Society, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui