Ultra-high performance concrete UHPC : fundamentals, design, examples / / Ekkehard Fehling [and four others] ; coverdesign, Hans Baltzer ; photo, Noclas Janberg |
Edizione | [5th ed.] |
Pubbl/distr/stampa | Berlin, Germany : , : Ernst & Sohn, , 2014 |
Descrizione fisica | 1 online resource (201 p.) |
Disciplina | 620.136 |
Collana | BetonKalender |
Soggetto topico |
Concrete
Building |
ISBN |
3-433-60415-0
3-433-60407-X 3-433-60406-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Ultra-High Performance Concrete UHPC: Fundamentals - Design - Examples; Contents; Editorial; 1 Introduction; 2 Principles for the production of UHPC; 2.1 Development; 2.2 Basic material concepts; 2.2.1 Microstructure properties; 2.2.2 Grading optimization; 2.3 Raw materials; 2.3.1 Cement; 2.3.2 Reactive admixtures; 2.3.2.1 Silica fume; 2.3.2.2 Ground granulated blast furnace slag; 2.3.3 Inert admixtures; 2.3.4 Superplasticizers; 2.3.5 Steel fibres; 2.4 Mix composition; 2.5 Mixing; 2.6 Curing and heat treatment; 2.7 Testing; 2.7.1 Fresh concrete
2.7.2 Compressive and flexural tensile strengths 3 Mechanical properties of the hardened concrete; 3.1 General; 3.2 Behaviour in compression; 3.2.1 UHPC without fibres; 3.2.2 UHPC with steel fibres; 3.2.3 Further factors affecting the compressive strength; 3.2.3.1 Geometry of test specimen and test setup; 3.2.3.2 Heat treatment; 3.3 Behaviour in tension; 3.3.1 Axial (concentric) tension loads; 3.3.2 Flexural tensile strength; 3.3.3 Derivation of axial tensile strength from compressive strength; 3.3.4 Derivation of axial tensile strength from bending tests; 3.3.5 Splitting tensile strength 3.3.6 How fibre geometry and orientation influence the behaviour of UHPC in tension 3.3.7 Converting the stress-crack width relationship into a stress-strain diagram; 3.3.8 Interaction of fibres and bar reinforcement; 3.4 Shrinkage; 3.5 Creep; 3.6 Multi-axial stresses; 3.7 Fatigue behaviour; 3.8 Dynamic actions; 3.9 Fire resistance; 3.10 UHPC with combinations of fibres ('fibre cocktails'); 4 Durability; 4.1 Microstructure; 4.2 Resistance to aggressive media; 4.3 Classification in exposure classes; 5 Design principles; 5.1 Influence of fibre distribution and fibre orientation 5.2 Analyses for the ultimate limit state 5.2.1 Safety concept; 5.2.2 Simplified stress-strain curve for design; 5.2.2.1 Compression actions; 5.2.2.2 Tension actions; 5.2.3 Design for bending and normal force; 5.2.4 Design for shear; 5.2.4.1 Tests at the University of Kassel; 5.2.4.2 Tests at RWTH Aachen University; 5.2.4.3 Tests at Delft University of Technology; 5.2.5 Punching shear; 5.2.6 Strut-and-tie models; 5.2.6.1 Load-carrying capacity of struts; 5.2.6.2 Load-carrying capacity of ties; 5.2.6.3 Load-carrying capacity of nodes; 5.2.7 Partially loaded areas; 5.2.8 Fatigue 5.3 Analyses for the serviceability limit state 5.3.1 Limiting crack widths; 5.3.2 Minimum reinforcement; 5.3.3 Calculating deformations; 6 Connections; 6.1 General; 6.2 Dry joints; 6.3 Glued joints; 6.4 Wet joints; 6.5 Grouted joints; 6.6 Adding UHPC layers to existing components to upgrade structures; 7 Projects completed; 7.1 Bridges; 7.1.1 Canada; 7.1.1.1 Bridge for pedestrians/cyclists, Sherbrooke (1997); 7.1.1.2 Glenmore/Legsby footbridge, Calgary (2007); 7.1.2 France; 7.1.2.1 Road bridge, Bourg-lès-Valence; 7.1.2.2 Pont du Diable footbridge (2005) 7.1.2.3 Pont de la Chabotte road bridge |
Record Nr. | UNINA-9910132343703321 |
Berlin, Germany : , : Ernst & Sohn, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Ultra-high performance concrete UHPC : fundamentals, design, examples / / Ekkehard Fehling [and four others] ; coverdesign, Hans Baltzer ; photo, Noclas Janberg |
Edizione | [5th ed.] |
Pubbl/distr/stampa | Berlin, Germany : , : Ernst & Sohn, , 2014 |
Descrizione fisica | 1 online resource (201 p.) |
Disciplina | 620.136 |
Collana | BetonKalender |
Soggetto topico |
Concrete
Building |
ISBN |
3-433-60415-0
3-433-60407-X 3-433-60406-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Ultra-High Performance Concrete UHPC: Fundamentals - Design - Examples; Contents; Editorial; 1 Introduction; 2 Principles for the production of UHPC; 2.1 Development; 2.2 Basic material concepts; 2.2.1 Microstructure properties; 2.2.2 Grading optimization; 2.3 Raw materials; 2.3.1 Cement; 2.3.2 Reactive admixtures; 2.3.2.1 Silica fume; 2.3.2.2 Ground granulated blast furnace slag; 2.3.3 Inert admixtures; 2.3.4 Superplasticizers; 2.3.5 Steel fibres; 2.4 Mix composition; 2.5 Mixing; 2.6 Curing and heat treatment; 2.7 Testing; 2.7.1 Fresh concrete
2.7.2 Compressive and flexural tensile strengths 3 Mechanical properties of the hardened concrete; 3.1 General; 3.2 Behaviour in compression; 3.2.1 UHPC without fibres; 3.2.2 UHPC with steel fibres; 3.2.3 Further factors affecting the compressive strength; 3.2.3.1 Geometry of test specimen and test setup; 3.2.3.2 Heat treatment; 3.3 Behaviour in tension; 3.3.1 Axial (concentric) tension loads; 3.3.2 Flexural tensile strength; 3.3.3 Derivation of axial tensile strength from compressive strength; 3.3.4 Derivation of axial tensile strength from bending tests; 3.3.5 Splitting tensile strength 3.3.6 How fibre geometry and orientation influence the behaviour of UHPC in tension 3.3.7 Converting the stress-crack width relationship into a stress-strain diagram; 3.3.8 Interaction of fibres and bar reinforcement; 3.4 Shrinkage; 3.5 Creep; 3.6 Multi-axial stresses; 3.7 Fatigue behaviour; 3.8 Dynamic actions; 3.9 Fire resistance; 3.10 UHPC with combinations of fibres ('fibre cocktails'); 4 Durability; 4.1 Microstructure; 4.2 Resistance to aggressive media; 4.3 Classification in exposure classes; 5 Design principles; 5.1 Influence of fibre distribution and fibre orientation 5.2 Analyses for the ultimate limit state 5.2.1 Safety concept; 5.2.2 Simplified stress-strain curve for design; 5.2.2.1 Compression actions; 5.2.2.2 Tension actions; 5.2.3 Design for bending and normal force; 5.2.4 Design for shear; 5.2.4.1 Tests at the University of Kassel; 5.2.4.2 Tests at RWTH Aachen University; 5.2.4.3 Tests at Delft University of Technology; 5.2.5 Punching shear; 5.2.6 Strut-and-tie models; 5.2.6.1 Load-carrying capacity of struts; 5.2.6.2 Load-carrying capacity of ties; 5.2.6.3 Load-carrying capacity of nodes; 5.2.7 Partially loaded areas; 5.2.8 Fatigue 5.3 Analyses for the serviceability limit state 5.3.1 Limiting crack widths; 5.3.2 Minimum reinforcement; 5.3.3 Calculating deformations; 6 Connections; 6.1 General; 6.2 Dry joints; 6.3 Glued joints; 6.4 Wet joints; 6.5 Grouted joints; 6.6 Adding UHPC layers to existing components to upgrade structures; 7 Projects completed; 7.1 Bridges; 7.1.1 Canada; 7.1.1.1 Bridge for pedestrians/cyclists, Sherbrooke (1997); 7.1.1.2 Glenmore/Legsby footbridge, Calgary (2007); 7.1.2 France; 7.1.2.1 Road bridge, Bourg-lès-Valence; 7.1.2.2 Pont du Diable footbridge (2005) 7.1.2.3 Pont de la Chabotte road bridge |
Record Nr. | UNISA-996198254003316 |
Berlin, Germany : , : Ernst & Sohn, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Ultra-high performance concrete UHPC : fundamentals, design, examples / / Ekkehard Fehling [and four others] ; coverdesign, Hans Baltzer ; photo, Noclas Janberg |
Edizione | [5th ed.] |
Pubbl/distr/stampa | Berlin, Germany : , : Ernst & Sohn, , 2014 |
Descrizione fisica | 1 online resource (201 p.) |
Disciplina | 620.136 |
Collana | BetonKalender |
Soggetto topico |
Concrete
Building |
ISBN |
3-433-60415-0
3-433-60407-X 3-433-60406-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Ultra-High Performance Concrete UHPC: Fundamentals - Design - Examples; Contents; Editorial; 1 Introduction; 2 Principles for the production of UHPC; 2.1 Development; 2.2 Basic material concepts; 2.2.1 Microstructure properties; 2.2.2 Grading optimization; 2.3 Raw materials; 2.3.1 Cement; 2.3.2 Reactive admixtures; 2.3.2.1 Silica fume; 2.3.2.2 Ground granulated blast furnace slag; 2.3.3 Inert admixtures; 2.3.4 Superplasticizers; 2.3.5 Steel fibres; 2.4 Mix composition; 2.5 Mixing; 2.6 Curing and heat treatment; 2.7 Testing; 2.7.1 Fresh concrete
2.7.2 Compressive and flexural tensile strengths 3 Mechanical properties of the hardened concrete; 3.1 General; 3.2 Behaviour in compression; 3.2.1 UHPC without fibres; 3.2.2 UHPC with steel fibres; 3.2.3 Further factors affecting the compressive strength; 3.2.3.1 Geometry of test specimen and test setup; 3.2.3.2 Heat treatment; 3.3 Behaviour in tension; 3.3.1 Axial (concentric) tension loads; 3.3.2 Flexural tensile strength; 3.3.3 Derivation of axial tensile strength from compressive strength; 3.3.4 Derivation of axial tensile strength from bending tests; 3.3.5 Splitting tensile strength 3.3.6 How fibre geometry and orientation influence the behaviour of UHPC in tension 3.3.7 Converting the stress-crack width relationship into a stress-strain diagram; 3.3.8 Interaction of fibres and bar reinforcement; 3.4 Shrinkage; 3.5 Creep; 3.6 Multi-axial stresses; 3.7 Fatigue behaviour; 3.8 Dynamic actions; 3.9 Fire resistance; 3.10 UHPC with combinations of fibres ('fibre cocktails'); 4 Durability; 4.1 Microstructure; 4.2 Resistance to aggressive media; 4.3 Classification in exposure classes; 5 Design principles; 5.1 Influence of fibre distribution and fibre orientation 5.2 Analyses for the ultimate limit state 5.2.1 Safety concept; 5.2.2 Simplified stress-strain curve for design; 5.2.2.1 Compression actions; 5.2.2.2 Tension actions; 5.2.3 Design for bending and normal force; 5.2.4 Design for shear; 5.2.4.1 Tests at the University of Kassel; 5.2.4.2 Tests at RWTH Aachen University; 5.2.4.3 Tests at Delft University of Technology; 5.2.5 Punching shear; 5.2.6 Strut-and-tie models; 5.2.6.1 Load-carrying capacity of struts; 5.2.6.2 Load-carrying capacity of ties; 5.2.6.3 Load-carrying capacity of nodes; 5.2.7 Partially loaded areas; 5.2.8 Fatigue 5.3 Analyses for the serviceability limit state 5.3.1 Limiting crack widths; 5.3.2 Minimum reinforcement; 5.3.3 Calculating deformations; 6 Connections; 6.1 General; 6.2 Dry joints; 6.3 Glued joints; 6.4 Wet joints; 6.5 Grouted joints; 6.6 Adding UHPC layers to existing components to upgrade structures; 7 Projects completed; 7.1 Bridges; 7.1.1 Canada; 7.1.1.1 Bridge for pedestrians/cyclists, Sherbrooke (1997); 7.1.1.2 Glenmore/Legsby footbridge, Calgary (2007); 7.1.2 France; 7.1.2.1 Road bridge, Bourg-lès-Valence; 7.1.2.2 Pont du Diable footbridge (2005) 7.1.2.3 Pont de la Chabotte road bridge |
Record Nr. | UNINA-9910827975203321 |
Berlin, Germany : , : Ernst & Sohn, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|