The representation theory of the symmetric group / / G. D. James
| The representation theory of the symmetric group / / G. D. James |
| Autore | James G. D (Gordon Douglas), <1945-> |
| Edizione | [1st ed. 1978.] |
| Pubbl/distr/stampa | Berlin, Germany : , : Springer, , [1978] |
| Descrizione fisica | 1 online resource (VIII, 160 p.) |
| Disciplina | 512.2 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico | Representations of groups |
| ISBN | 3-540-35711-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Background from representation theory -- The symmetric group -- Diagrams, tableaux and tabloids -- Specht modules -- Examples -- The character table of -- The garnir relations -- The standard basis of the specht module -- The branching theorem -- p-regular partitions -- The irreducible representations of -- Composition factors -- Semistandard homomorphisms -- Young’s rule -- Sequences -- The Littlewood-richardson rule -- A specht series for M? -- Hooks and skew-hooks -- The determinantal form -- The hook formula for dimensions -- The murnaghan-nakayama rule -- Binomial coefficients -- Some irreducible specht modules -- On the decomposition matrices of -- Young’s orthogonal form -- Representations of the general linear group. |
| Record Nr. | UNISA-996466761003316 |
James G. D (Gordon Douglas), <1945->
|
||
| Berlin, Germany : , : Springer, , [1978] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Representations and characters of groups / / Gordon James and Martin Liebeck [[electronic resource]]
| Representations and characters of groups / / Gordon James and Martin Liebeck [[electronic resource]] |
| Autore | James G. D (Gordon Douglas), <1945-> |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2001 |
| Descrizione fisica | 1 online resource (viii, 458 pages) : digital, PDF file(s) |
| Disciplina | 512/.2 |
| Collana | Cambridge mathematical textbooks |
| Soggetto topico | Representations of groups |
| ISBN |
1-107-12542-1
1-139-63692-8 1-283-87103-3 1-139-81164-9 0-511-04524-7 0-511-81453-4 0-511-15478-X 0-511-01700-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Half-title; Title; Copyright; Contents; Preface; 1 Groups and homomorphisms; Groups; 1.1 Examples; Subgroups; 1.2 Examples; Direct products; 1.3 Example; Functions; Homomorphisms; 1.4 Example; 1.5 Example; Cosets; 1.6 Lagrange's Theorem; Normal subgroups; 1.7 Examples; Simple groups; Kernels and images; (1.8); (1.9); 1.10 Theorem; 1.11 Example; Summary of Chapter 1; Exercises for Chapter 1; 2 Vector spaces and linear transformations; Vector spaces; (2.1); 2.2 Examples; Bases of vector spaces; 2.3 Example; (2.4); Subspaces; (2.5); 2.6 Examples; (2.7); Direct sums of subspaces
2.8 Examples(2.9); (2.10); Linear transformations; Kernels and images; (2:11); (2:12); 2.13 Examples; Invertible linear transformations; (2.14); Endomorphisms; (2.15); 2.16 Examples; Matrices; 2.17 Definition; 2.18 Examples; 2.19 Example; (2.20); (2.21); 2.22 Example; Invertible matrices; 2.23 Definition; (2.24); 2.25 Example; Eigenvalues; (2.26); 2.27 Examples; 2.28 Example; Projections; 2.29 Proposition; 2.30 Definition; 2.31 Example; 2.32 Proposition; 2.33 Example; Summary of Chapter 2; Exercises for Chapter 2; 3 Group representations; Representations; 3.1 Definition; 3.2 Examples Equivalent representations3.3 Definition; 3.4 Examples; Kernels of representations; 3.5 Definition; 3.6 Definition; 3.7 Proposition; 3.8 Examples; Summary of Chapter 3; Exercises for Chapter 3; 4 FG-modules; FG-modules; 4.1 Example; 4.2 Definition; 4.3 Definition; 4.4 Theorem; 4.5 Examples; 4.6 Proposition; (4.7); 4.8 Definitions; Permutation modules; 4.9 Example; 4.10 Definition; 4.11 Example; FG-modules and equivalent representations; 4.12 Theorem; 4.13 Example; Summary of Chapter 4; Exercises for Chapter 4; 5 FG-submodules and reducibility; FG-submodules; 5.1 Definition; 5.2 Examples Irreducible FG-modules5.3 Definition; (5.4); 5.5 Examples; Summary of Chapter 5; Exercises for Chapter 5; 6 Group algebras; The group algebra of G; 6.1 Example; 6.2 Example; 6.3 Definition; 6.4 Proposition; The regular FG-module; 6.5 Definition; 6.6 Proposition; 6.7 Example; FG acts on an FG-module; 6.8 Definition; 6.9 Examples; 6.10 Proposition; Summary of Chapter 6; Exercises for Chapter 6; 7 FG-homomorphisms; FG-homomorphisms; 7.1 Definition; 7.2 Proposition; 7.3 Examples; Isomorphic FG-modules; 7.4 Definition; 7.5 Proposition; 7.6 Theorem; (7.7); 7.8 Example; 7.9 Example; Direct sums (7.10)7.11 Proposition; 7.12 Proposition; Summary of Chapter 7; Exercises for Chapter 7; 8 Maschke's Theorem; Maschke's Theorem; 8.1 Maschke's Theorem; 8.2 Examples; (8.3); (8.4); 8.5 Example; Consequences of Maschke's Theorem; 8.6 Definition; 8.7 Theorem; 8.8 Proposition; Summary of Chapter 8; Exercises for Chapter 8; 9 Schur's Lemma; Schur's Lemma; 9.1 Schur's Lemma; 9.2 Proposition; 9.3 Corollary; 9.4 Examples; Reprensentation theory of finite abelian groups; 9.5 Proposition; 9.6 Theorem; (9.7); 9.8 Theorem; 9.9 Examples; Diagonalization; (9.10); 9.11 Proposition Some further applications of Schur's Lemma |
| Altri titoli varianti | Representations & Characters of Groups |
| Record Nr. | UNINA-9910454946603321 |
James G. D (Gordon Douglas), <1945->
|
||
| Cambridge : , : Cambridge University Press, , 2001 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Representations and characters of groups / / Gordon James and Martin Liebeck [[electronic resource]]
| Representations and characters of groups / / Gordon James and Martin Liebeck [[electronic resource]] |
| Autore | James G. D (Gordon Douglas), <1945-> |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2001 |
| Descrizione fisica | 1 online resource (viii, 458 pages) : digital, PDF file(s) |
| Disciplina | 512/.2 |
| Collana | Cambridge mathematical textbooks |
| Soggetto topico | Representations of groups |
| ISBN |
1-107-12542-1
1-139-63692-8 1-283-87103-3 1-139-81164-9 0-511-04524-7 0-511-81453-4 0-511-15478-X 0-511-01700-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Half-title; Title; Copyright; Contents; Preface; 1 Groups and homomorphisms; Groups; 1.1 Examples; Subgroups; 1.2 Examples; Direct products; 1.3 Example; Functions; Homomorphisms; 1.4 Example; 1.5 Example; Cosets; 1.6 Lagrange's Theorem; Normal subgroups; 1.7 Examples; Simple groups; Kernels and images; (1.8); (1.9); 1.10 Theorem; 1.11 Example; Summary of Chapter 1; Exercises for Chapter 1; 2 Vector spaces and linear transformations; Vector spaces; (2.1); 2.2 Examples; Bases of vector spaces; 2.3 Example; (2.4); Subspaces; (2.5); 2.6 Examples; (2.7); Direct sums of subspaces
2.8 Examples(2.9); (2.10); Linear transformations; Kernels and images; (2:11); (2:12); 2.13 Examples; Invertible linear transformations; (2.14); Endomorphisms; (2.15); 2.16 Examples; Matrices; 2.17 Definition; 2.18 Examples; 2.19 Example; (2.20); (2.21); 2.22 Example; Invertible matrices; 2.23 Definition; (2.24); 2.25 Example; Eigenvalues; (2.26); 2.27 Examples; 2.28 Example; Projections; 2.29 Proposition; 2.30 Definition; 2.31 Example; 2.32 Proposition; 2.33 Example; Summary of Chapter 2; Exercises for Chapter 2; 3 Group representations; Representations; 3.1 Definition; 3.2 Examples Equivalent representations3.3 Definition; 3.4 Examples; Kernels of representations; 3.5 Definition; 3.6 Definition; 3.7 Proposition; 3.8 Examples; Summary of Chapter 3; Exercises for Chapter 3; 4 FG-modules; FG-modules; 4.1 Example; 4.2 Definition; 4.3 Definition; 4.4 Theorem; 4.5 Examples; 4.6 Proposition; (4.7); 4.8 Definitions; Permutation modules; 4.9 Example; 4.10 Definition; 4.11 Example; FG-modules and equivalent representations; 4.12 Theorem; 4.13 Example; Summary of Chapter 4; Exercises for Chapter 4; 5 FG-submodules and reducibility; FG-submodules; 5.1 Definition; 5.2 Examples Irreducible FG-modules5.3 Definition; (5.4); 5.5 Examples; Summary of Chapter 5; Exercises for Chapter 5; 6 Group algebras; The group algebra of G; 6.1 Example; 6.2 Example; 6.3 Definition; 6.4 Proposition; The regular FG-module; 6.5 Definition; 6.6 Proposition; 6.7 Example; FG acts on an FG-module; 6.8 Definition; 6.9 Examples; 6.10 Proposition; Summary of Chapter 6; Exercises for Chapter 6; 7 FG-homomorphisms; FG-homomorphisms; 7.1 Definition; 7.2 Proposition; 7.3 Examples; Isomorphic FG-modules; 7.4 Definition; 7.5 Proposition; 7.6 Theorem; (7.7); 7.8 Example; 7.9 Example; Direct sums (7.10)7.11 Proposition; 7.12 Proposition; Summary of Chapter 7; Exercises for Chapter 7; 8 Maschke's Theorem; Maschke's Theorem; 8.1 Maschke's Theorem; 8.2 Examples; (8.3); (8.4); 8.5 Example; Consequences of Maschke's Theorem; 8.6 Definition; 8.7 Theorem; 8.8 Proposition; Summary of Chapter 8; Exercises for Chapter 8; 9 Schur's Lemma; Schur's Lemma; 9.1 Schur's Lemma; 9.2 Proposition; 9.3 Corollary; 9.4 Examples; Reprensentation theory of finite abelian groups; 9.5 Proposition; 9.6 Theorem; (9.7); 9.8 Theorem; 9.9 Examples; Diagonalization; (9.10); 9.11 Proposition Some further applications of Schur's Lemma |
| Altri titoli varianti | Representations & Characters of Groups |
| Record Nr. | UNINA-9910780061303321 |
James G. D (Gordon Douglas), <1945->
|
||
| Cambridge : , : Cambridge University Press, , 2001 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||