top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Earthquake Geotechnics / / edited by T. G. Sitharam, Ravi S. Jakka, Sreevalsa Kolathayar
Advances in Earthquake Geotechnics / / edited by T. G. Sitharam, Ravi S. Jakka, Sreevalsa Kolathayar
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (257 pages)
Disciplina 624.1762
Collana Springer Tracts in Civil Engineering
Soggetto topico Engineering geology
Geotechnical engineering
Natural disasters
Soil science
Mechanics, Applied
Solids
Geoengineering
Geotechnical Engineering and Applied Earth Sciences
Natural Hazards
Soil Science
Solid Mechanics
ISBN 981-19-3330-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Risks and Vulnerabilities in the design, construction and operation of offshore wind turbine farms in seismic areas -- Chapter 2. Numerical modelling of basin effects on earthquake ground motions in Kutch basin -- Chapter 3. Controlled ground-borne vibrations for design of sub-structural systems - theory and practice -- Chapter 4. Geotechnical, Geological and Geophysical Investigations for Seismic Microzonation and Site-Specific Earthquake Hazard Analysis in Gujarat -- Chapter 5. Seismic Analysis of Pile Foundations using an Integrated Approach -- Chapter 6. Numerical Modeling of Liquefaction -- Chapter 7. Region Specific Consideration for GMPE Development,Representative Seismic Hazard Estimation and Rock Design Spectrum for Himalayan Region -- Chapter 8. Seismic Response of Shallow Foundations on Reinforced Sand Bed -- Chapter 9. Seismic Performance Evaluation of Concrete Gravity Dam on Rock Foundation System with Shear Zone -- Chapter 10. Visualization of Liquefaction in Soils with PWP Measurements by Tapping -- Chapter 11. An Experimental Study on Soil Spring Stiffness of Vibrating Bases on Polypropylene Fibre Reinforced Fine Sand -- Chapter 12. Guidelines for minimization of uncertainties and estimation of a reliable shear wave velocity profile using MASW testing: A state of the art review.
Record Nr. UNINA-9910627244903321
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Theory and practice in earthquake engineering and technology / / T. G. Sitharam [and three others], editors
Theory and practice in earthquake engineering and technology / / T. G. Sitharam [and three others], editors
Pubbl/distr/stampa Singapore : , : Springer, , [2023]
Descrizione fisica 1 online resource (375 pages)
Disciplina 624.1762
Collana Springer tracts in civil engineering
Soggetto topico Earthquake engineering
Earthquake engineering - Data processing
Seismology
Soggetto non controllato Fire
Meteorology
Technology & Engineering
Science
ISBN 981-19-2324-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Editors and Contributors -- 1 Earthquake Engineering and Technology -- 1.1 Background and Opening Remarks -- 1.2 Expertise and Professionals Involved -- 1.3 Seismology: Why Do Earthquakes Occur? -- 1.3.1 Genesis of Earthquakes -- 1.3.2 Finite Element Model for Seismic Activity in Indian Plate -- 1.3.3 Cause of Earthquake in Himalayan Subduction Zone -- 1.4 Seismic Soil-Structure Interaction (SSI) -- 1.5 Earthquake Disaster Management -- 1.6 Seismic Design Philosophy: Performance-Based Seismic Analysis -- 1.7 Static Pushover Analysis -- 1.8 Advanced Dynamic Response Modification Devices -- 1.9 Seismic Base Isolation -- 1.9.1 New Seismic Protection Devices-Isolation Systems -- 1.9.2 Base-Isolated Structures at IIT Guwahati -- 1.9.3 Tuned Mass Damper(s) -- 1.9.4 Innovative Structural Control Algorithm -- 1.9.5 Need for Future Research -- References -- 2 Site Response Studies Application in Seismic Hazard Microzonation and Ground Characterization -- 2.1 Introduction -- 2.2 Damage Pattern Associated with Local Geological Condition During Earthquake -- 2.3 Spectral Characteristics of Ground Motion -- 2.4 Site Effect on Different Earthquake Ground Motion Parameters -- 2.4.1 Site Effect on Peak Values (Peak Ground Acceleration and Peak Ground Velocity) -- 2.4.2 Site Effect on Duration -- 2.4.3 Site Effect on Spatial Distance -- 2.5 Methods of Estimating Site Response -- 2.5.1 Empirical Methods -- 2.5.2 Experimental Methods -- 2.5.3 Numerical Method of Ground Response Analysis -- 2.6 Methodology Adopted for Site Response Study in Indian Cities -- 2.6.1 Site Response Studies of NCT Delhi -- 2.7 Geological Dependence of Transfer Function Vis-a-Vis Ground Characterization -- 2.7.1 Ground Characterization Based on Nature of Spectral Ratio Curves of Horizontal to Vertical Component (QTS: Quasi-Transfer Spectrum) of Microtremor.
2.7.2 Ground Characterization Based on Peak Frequency (fo), Peak Amplification and Nature of Spectral Ratio Curves of Horizontal to Vertical Component (QTS: Quasi-Transfer Spectrum) of Microtremor -- 2.8 Application of H/V Ratio-Based Techniques for the Delineation of Geological Attributes -- References -- 3 Seismic Design of Shallow Foundations: Principles, Design Methodologies and Current Indian Practices -- 3.1 Introduction -- 3.2 Shallow Foundation Resisting Mechanisms, Earthquake Loading and Possible Failure Modes, Design Approaches for Various Loads -- 3.2.1 Resisting Mechanisms of the Founding Soil -- 3.2.2 Components of Earthquake Loading -- 3.2.3 Possible Shallow Foundation Failures -- 3.2.4 Design Against Vertical Loads -- 3.2.5 Design Against Horizontal Loads -- 3.2.6 Design Against Moments -- 3.3 Shallow Foundation Design Alternatives -- 3.4 Seismic Settlements -- 3.5 Seismic Design of Shallow Foundations as per IS 1904 -- 3.5.1 Design Against Settlements, as per IS 1904 -- 3.6 Seismic Effects to be Considered as Per IS 1893 Part 1 -- 3.6.1 Influence of Soil Type on Intensity of Shaking: -- 3.6.2 Increase in Allowable Bearing Pressures in Soils -- 3.6.3 Accounting for Liquefiable Soils -- 3.6.4 Other Guidelines for the Seismic Design of Shallow Foundations as per IS 1893 Part 1 -- 3.7 Seismic Design of Shallow Foundations Using Pseudostatic Method as per IS 1893 Part 1 -- 3.7.1 Estimation of Earthquake Loading -- 3.7.2 Conversion of Earthquake Loading into Equivalent Static Load -- 3.7.3 Estimation of Bearing Capacity Under Earthquake Loading -- 3.7.4 Accounting for Soil Strength Reduction -- 3.7.5 Estimation of Sliding Failure -- 3.7.6 Seismic Design Procedure as Per Indian Standards -- 3.7.7 Case study -- 3.7.8 Central Column -- 3.7.9 Edge Column -- 3.7.10 Corner Column -- 3.7.11 Important Points to Note.
3.8 Calculation of Settlements Under Earthquake Loading -- 3.8.1 Dry Sand Settlement -- 3.8.2 Settlement of Saturated Sands -- 3.9 Summary and Conclusions -- 3.9.1 Steps Involved in the Seismic Design of a Shallow Foundation -- 3.9.2 Concluding Remarks -- References -- 4 Seismic Induced Pounding of Structures and Its Mitigation -- 4.1 Introduction -- 4.2 Conditions and Types of Structural Pounding -- 4.3 Pounding Damage in Past Earthquakes -- 4.4 Pounding Models -- 4.5 Effect of Varying Structural Dynamic Properties and Separation Distance on Pounding -- 4.6 Mitigation Measures and Codal Provisions for Pounding -- References -- 5 Influence of Soil-Structure Interaction on Yielding of Pile Embedded in Stratified Soil -- 5.1 Introduction -- 5.2 Numerical Modeling of Soil-Pile System -- 5.2.1 Numerical Modeling of Pile -- 5.2.2 Numerical Modeling of Soil -- 5.2.3 Boundary Conditions -- 5.2.4 Validation of Numerical Model -- 5.3 Pushover Analysis of Pile Embedded in Stratified Soil -- 5.3.1 Pile Response Due to Pushover Analysis -- 5.3.2 Effect of Soil Type on Yield Moment of Pile -- 5.4 Conclusion -- References -- 6 Development of Liquefaction Susceptibility Maps for Vishakhapatnam (India) -- 6.1 Introduction -- 6.2 Seismotectonic Details of the Study Region -- 6.3 Development of Response Spectra for Vishakhapatnam -- 6.4 Peak Ground Acceleration Hazard Maps -- 6.5 Liquefaction Hazard Maps -- 6.5.1 Liquefaction Potential Index Using Stress-Based Approach -- 6.5.2 Estimation of Cyclic Resistance Ratio (CRR) -- 6.5.3 Estimation of Cyclic Stress Ratio (CSR) -- 6.5.4 Factor of Safety for Each Sediment Layer -- 6.5.5 Liquefaction Potential Index (LPI) -- 6.6 Results and Conclusions -- References -- 7 Effectiveness of Base Isolation Systems for Seismic Response Control of Masonry Dome -- 7.1 Introduction -- 7.2 Base Isolation for Masonry Dome.
7.3 Analysis Method -- 7.4 Simulation of Masonry Dome in SAP2000 -- 7.5 Masonry Dome Installed with Lead Rubber Bearings -- 7.6 Masonry Dome Installed with FPS -- 7.7 Nonlinear Time History Analysis -- 7.8 Comparison of Fixed Base, LRB-Isolated and FPS-Isolated Masonry Dome -- 7.9 Conclusions -- References -- 8 Rapid Retrofitting of RC Columns Using Fe-SMA for Enhanced Seismic Performance -- 8.1 Introduction -- 8.2 Retrofitting Techniques Using Confinement Approach -- 8.2.1 Comparison of Stress-Strain Behavior of Passively and Actively Confined Concrete -- 8.2.2 Active Confinement Techniques -- 8.2.3 Shape Memory Alloys -- 8.2.4 Fe-Based Shape Memory Alloys -- 8.3 Parametric Study on Concrete Confined by Fe-SMA Strips -- 8.3.1 Material Models -- 8.3.2 Finite Element Model -- 8.3.3 Results and Discussion -- 8.3.4 Observations Based on Parametric Study -- 8.4 Design Methodology Adopted for Rapid Retrofitting Strategies of RC Columns Using Fe-SMA Strips -- 8.5 Concluding Remarks -- References -- 9 Earthquake Early Warning System: Its Relevance for India -- 9.1 Introduction -- 9.2 Brief Background -- 9.3 Details of EEW Systems -- 9.3.1 Network of Sensors -- 9.3.2 Location and Communication Between Sensors and CMS -- 9.3.3 Central Monitoring Station -- 9.3.4 Dissemination of Warning -- 9.4 Need for EEW System in India -- 9.5 EEW System for Northern India -- 9.5.1 Region for EEW Sensor Network -- 9.5.2 Target Location -- 9.5.3 Performance of EEW System -- 9.6 Concluding Remarks -- References -- 10 Earthquake Loss Information System for the City of Guwahati, Assam, India -- 10.1 Introduction -- 10.2 Seismic Hazard Situation of Guwahati -- 10.3 Earthquake Loss Estimates: Methodology and Tool -- 10.4 Ground Shaking, Exposure and Vulnerability for Guwahati -- 10.4.1 Ground Shaking Modelling -- 10.4.2 Exposure Modelling -- 10.4.3 Vulnerability Modelling.
10.5 Damage and Loss Computation: Results and Discussion -- 10.6 Conclusion -- References -- 11 Probabilistic Seismic Hazard Assessment for Hydropower Project Sites in the Himalayan Region -- 11.1 Introduction -- 11.2 Brief Description of Study Area -- 11.3 Methodology -- 11.4 Results and Discussion -- 11.5 Conclusion -- References -- 12 On Structure-Equipment-Piping Interactions Under Earthquake Excitation -- 12.1 Introduction -- 12.2 Decoupling Criteria -- 12.3 Direct Method of Evaluating Floor Spectrum Using Design Ground Spectrum -- 12.4 Approximate Method of Evaluating Floor Spectrum Using Design Ground Spectrum -- 12.4.1 Approximate Method -- 12.5 Discussions and Conclusions -- References -- 13 Performance-Based Seismic Design of RC Structures -- 13.1 Introduction -- 13.2 PBD Procedure -- 13.2.1 Assessment and Representation of Ground Shaking Hazard -- 13.2.2 Selection of Performance Objective(s) -- 13.2.3 Structural Modelling -- 13.2.4 Non-linear Analysis -- 13.2.5 Assessment of Performance and Iterative Revision of Design -- 13.3 Design Example -- 13.3.1 Building Model Description -- 13.3.2 Results -- 13.4 Conclusions -- References -- 14 Comparative Analysis of SSR and HVSR Method for Site Response Analysis -- 14.1 Introduction -- 14.2 Standard Spectral Ratio (SSR Analysis) -- 14.2.1 Standard Spectral Ratio (SSR) Method -- 14.2.2 Selection of Reference Site -- 14.2.3 Dataset and Data Processing of Earthquake Records -- 14.2.4 Analyses and Discussion -- 14.2.5 Site Amplification -- 14.2.6 Observations -- 14.2.7 Summary -- 14.3 Horizontal to Vertical Spectral Ratio (HVSR) Analysis -- 14.3.1 Introduction -- 14.3.2 HVSR Technique -- 14.3.3 HVSR Methodology Adopted -- 14.3.4 Selection of Records -- 14.3.5 Selection of Time Window -- 14.3.6 Analysis Results -- 14.3.7 Site Amplification from HVSR of Strong Motion.
14.3.8 Determination of Fundamental Frequency.
Record Nr. UNINA-9910627236903321
Singapore : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui