Vai al contenuto principale della pagina

Functional Composites : Role in Modern Engineering



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kunar Sandip Visualizza persona
Titolo: Functional Composites : Role in Modern Engineering Visualizza cluster
Pubblicazione: Newark : , : John Wiley & Sons, Incorporated, , 2025
©2025
Edizione: 1st ed.
Descrizione fisica: 1 online resource (229 pages)
Disciplina: 620.118
Altri autori: CharkhaPranav  
JajuSantosh  
TiwariHarish  
Nota di contenuto: Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Introduction to Functional Composite Materials -- 1.1 Introduction -- 1.2 Overview -- 1.3 Characteristics of Composites -- 1.4 A Fundamental Method for Choosing Materials -- 1.5 Polymer Matrix -- 1.6 Reinforcements -- 1.7 Techniques for Producing Composites -- 1.7.1 Molding Using Open Contact -- 1.7.2 Resin Infusion Method -- 1.7.3 Injection Molding -- 1.7.4 Filament Winding -- 1.7.5 Pultrusion Process -- 1.7.6 Additive Manufacturing -- 1.8 Composite Properties -- 1.9 Latest Developments -- 1.10 Applications -- 1.11 Conclusion -- References -- Chapter 2 Shape Memory Alloys as Functional Composites -- 2.1 Introduction -- 2.1.1 Exploration and Attempts at Development -- 2.2 Composition and Microstructure of Shape Memory Alloys' (SMAs') Composition -- 2.2.1 Microstructure -- 2.2.2 Characterization Techniques -- 2.2.3 Shape Memory Effect -- 2.2.4 Super Elasticity -- 2.3 Processing Techniques Used for Shape Memory Alloys -- 2.3.1 Casting -- 2.3.2 Powder Metallurgy -- 2.3.3 Thermomechanical Processing -- 2.4 Characterization Methods Employed to Evaluate the Microstructural and Mechanical Properties of SMAs -- 2.4.1 Microscopy -- 2.4.2 X-Ray Diffraction (XRD) -- 2.4.3 Tests of the Material's Mechanical Characteristics and Behavior -- 2.5 Applications of Shape Memory Alloys as Functional Composites -- 2.5.1 Aerospace -- 2.5.2 Automotive -- 2.5.3 Medical Applications -- 2.5.4 Consumer Electronics -- 2.6 Design Considerations and Challenges in Using SMAs for Specific Applications -- 2.6.1 Compatibility with the Prerequisites of the Application -- 2.6.2 Mechanisms of Actuation and Their Controls -- 2.7 The Choice of Materials and Their Compatibility -- 2.7.1 Fatigue and Durability -- 2.7.2 Manufacturing and Processing.
2.7.3 Expense and the Possibility of Commercialization -- 2.8 Case Studies and Success Stories That Demonstrate the Practical Implementation of SMAs as Functional Composite Structures -- 2.8.1 The Use of Smart Morphing Adaptors in Aerospace -- 2.8.2 Self-Deployable Space Structures -- 2.8.3 Orthopedic Implants and Medical Devices -- 2.8.4 Adaptive Structures in the Automotive Sector -- 2.8.5 Wearable Technologies and Intelligent Textiles -- 2.9 Current State of Research in Shape Memory Alloys and Potential Areas for Future Exploration -- 2.10 Recent Advancements in the Development of Novel SMA Compositions, Processing, and Applications -- 2.10.1 Novel SMA Compositions -- 2.10.2 Advanced Processing Methods -- 2.10.3 SMA Application Advancements -- 2.10.4 Composite Hybrid Structures -- 2.11 Conclusions -- References -- Chapter 3 Characterization and Testing of Smart Functional Composites -- 3.1 Introduction -- 3.1.1 Shape Memory Composites (SMPs) -- 3.1.2 Self-Healing Composites -- 3.1.3 Piezoelectric Composites -- 3.1.4 Magnetostrictive Composites -- 3.1.5 Thermoelectric Composites -- 3.1.6 Conductive Composites -- 3.1.7 Light-Responsive Composites -- 3.1.8 Bio-Inspired Composites -- 3.1.9 Multi-Functional Composites -- 3.2 Mechanical Characterization -- 3.2.1 Overview of Mechanical Testing Methods -- 3.2.2 Discussion of Mechanical Properties -- 3.2.3 Mechanical Characterization of Smart Functional Composites -- 3.2.4 Electrical Characterization of Smart Functional Composites -- 3.2.4.1 Dielectric Strength -- 3.2.4.2 Insulation Resistance -- 3.2.4.3 Volume Resistivity and Surface Resistivity -- 3.2.5 Types of Smart Functional Composites -- 3.2.5.1 Structural Smart Composites -- 3.2.5.2 Composites for Actuation -- 3.2.5.3 Novel Functional Composites -- 3.2.5.4 Nanocomposites for Novel Functions.
3.3 Thermal Characterization of Smart Functional Composites -- 3.3.1 Thermal Behavior of Smart Functional Composites -- 3.3.1.1 Thermal Characterization Techniques -- 3.3.1.2 Thermal Properties of Key Smart Functional Composites -- 3.3.1.3 Challenges and Future Directions -- 3.4 Environmental and Durability Testing of Functional Smart Materials -- 3.4.1 Thermal Cycling and Temperature Testing -- 3.4.2 Moisture and Humidity Testing -- 3.4.3 UV and Radiation Exposure -- 3.4.4 Mechanical and Vibration Testing -- 3.4.5 Electromagnetic Interference (EMI) Testing -- 3.5 Durability Testing Methodologies for Smart Functional Composites -- 3.5.1 Accelerated Aging Testing -- 3.5.2 Self-Healing and Damage Detection -- 3.5.3 Field Testing and Real-World Simulations -- 3.6 Recent Advances in Smart Functional Composite Testing -- 3.6.1 Integration of Smart Sensors for Real-Time Monitoring -- 3.6.2 Nanomaterial Enhancements -- 3.7 Conclusion -- References -- Chapter 4 Piezoelectric Nanocomposites -- 4.1 Introduction -- 4.1.1 The Piezoelectric Effect -- 4.1.1.1 Direct Piezoelectric Effect -- 4.1.1.2 Reverse Piezoelectric Effect -- 4.2 Variables and Constants That Have an Impact on the Performance of Piezoelectric Materials -- 4.2.1 Electro-Mechanical Coupling Factors (k) -- 4.2.2 Piezoelectric Strain (Charge) Constant (d) -- 4.2.3 Piezoelectric Voltage Constants (g) -- 4.2.4 Mechanical Quality Factor (Qm) -- 4.2.5 Electrical Loss (tand) -- 4.2.6 Dielectric Constant (e) -- 4.3 Piezoelectric Nanocomposites -- 4.3.1 Piezoelectric Nanocomposite Materials-Polymer- Based -- 4.3.2 Poling -- 4.3.3 Preparation of a Nano-Polymeric Piezoelectric Composite -- 4.3.4 Piezoelectric Nanoparticle Polymer Composite Foam (PNPF) -- 4.3.5 Reverse Effect of PNPF -- 4.4 Piezoelectric Polymer Materials -- 4.4.1 Polyvinylidene Fluoride (PVDF).
4.4.2 Polyvinylidene Fluoride Trifluoro Ethylene (PVDF-TrFE) -- 4.4.3 Polyvinylidene Cyanide-Vinyl Acetate -- 4.4.4 Polyamide 11 (Nylon 11) -- 4.4.5 Cellular Polypropylene (PP) -- 4.4.6 Poly-Organo-Phosphazenes (POPh) -- 4.5 Piezoelectric Nanocomposite Materials-Ceramic-Based -- 4.5.1 Lead Zirconate Titanate (PZT) -- 4.5.2 Potassium Sodium Niobate (KNN) -- 4.5.3 Bismuth Sodium Titanate (BNT) -- 4.5.4 Aluminum Nitride (AlN) -- 4.5.5 Lithium Niobate -- 4.6 Improvements to Piezoelectric Ceramics -- 4.7 Applications of Piezoelectric Nanocomposites -- 4.7.1 Bio-Medical -- 4.7.2 Piezoelectric Tactile Sensors -- 4.7.3 Piezoelectric Vibrational Energy Harvestors Using Polymer Nanocomposite -- 4.7.4 Piezoelectric Nano-Generator (PENG) -- 4.7.4.1 Force Applied Perpendicular to the Nanowire's Axis -- 4.7.4.2 Force Applied Parallel to the Nanowire's Axis -- 4.7.5 Nanocomposite Electrical Generators (NEG) -- References -- Chapter 5 Modulation of Waveform Effect on Ni/Nano-ZrO2-TiO2 Composite Coating on Mild Steel -- 5.1 Introduction -- 5.2 Procedure -- 5.2.1 Materials and Synthesis of Nanocomposites -- 5.2.2 Electrodeposition -- 5.2.3 Characterization -- 5.3 Results and Discussions -- 5.3.1 Microscopic Structure Analysis -- 5.3.2 X-Ray Diffraction -- 5.3.3 Microhardness -- 5.3.4 Pitting Corrosion Studies -- 5.4 Conclusions -- References -- Chapter 6 Smart Composite Materials for Aerospace Applications -- 6.1 Introduction -- 6.1.1 Importance of Composite Materials in Aerospace -- 6.1.1.1 Weight Reduction -- 6.1.1.2 High Strength-to-Weight Ratio -- 6.1.1.3 Corrosion Resistance -- 6.1.1.4 Design Flexibility -- 6.1.1.5 Heat Resistance and Thermal Stability -- 6.1.1.6 Structural Health Monitoring -- 6.1.1.7 Reduction in Production Costs -- 6.1.1.8 Sustainability -- 6.1.2 Overview of Smart Functional Composite Polymer Materials -- 6.1.2.1 Key Characteristics.
6.1.2.2 Manufacturing Techniques -- 6.1.2.3 Applications -- 6.2 Types of Smart Functional Composite Polymer Materials -- 6.2.1 Polymer Matrix Composites (PMCs) -- 6.2.2 Carbon Fiber Reinforced Polymers (CFRP) -- 6.2.3 Glass Fiber Reinforced Polymers (GFRP) -- 6.2.4 Shape Memory Polymers (SMPs) -- 6.2.5 Self-Healing Polymers (SHPs) -- 6.2.6 Conductive Polymer Composites (CPCs) -- 6.3 Properties and Characteristics -- 6.3.1 Mechanical Properties -- 6.3.1.1 Strength -- 6.3.1.2 Stiffness -- 6.3.1.3 Toughness -- 6.3.2 Thermal Properties -- 6.3.2.1 Thermal Conductivity -- 6.3.2.2 Thermal Stability -- 6.3.3 Electrical Properties -- 6.3.3.1 Conductivity -- 6.3.3.2 Resistivity -- 6.3.4 Multifunctional Properties -- 6.3.4.1 Self-Sensing -- 6.3.4.2 Self-Healing -- 6.4 Aerospace Applications -- 6.4.1 Structural Components -- 6.4.1.1 Wings -- 6.4.1.2 Fuselage -- 6.4.1.3 Control Surfaces -- 6.4.2 Functional Components -- 6.4.2.1 Actuators -- 6.4.2.2 Sensors -- 6.4.2.3 Energy -- 6.4.2.4 Storage -- 6.4.3 Thermal Management Systems -- 6.4.4 Self-Healing Coatings and Materials -- 6.5 Manufacturing Techniques -- 6.5.1 Conventional Methods -- 6.5.1.1 Hand Layup -- 6.5.1.2 Resin Transfer Molding (RTM) -- 6.5.1.3 Compression Molding -- 6.5.2 Advanced Methods -- 6.5.2.1 Additive Manufacturing (AM) -- 6.5.2.2 Electrospinning -- 6.5.2.3 Automated Fiber Placement (AFP) -- 6.5.3 Nanotechnology-Enabled Manufacturing -- 6.6 Challenges -- 6.6.1 Interfacial Properties and Bonding -- 6.6.2 Scalability and Cost-Effectiveness -- 6.6.3 Integration with Existing Aerospace Systems -- 6.6.4 Future Research Directions -- 6.7 Conclusion -- References -- Chapter 7 Behavioral Study of Tribological Coating of Smart Functional Composites for High Wear Applications -- 7.1 Introduction -- 7.2 Principle of Tribology and Mechanisms of Wear -- 7.2.1 Wear Types.
7.2.2 Significance of Coating in Enhancing Wear Resistance.
Titolo autorizzato: Functional Composites  Visualizza cluster
ISBN: 1-394-24203-4
1-394-24202-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9911019313403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Advances in Production Engineering Series