The Beltrami equation / / Tadeusz Iwaniec, Gaven Martin |
Autore | Iwaniec Tadeusz |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2008] |
Descrizione fisica | 1 online resource (110 p.) |
Disciplina | 515.3533 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Conformal mapping
Differential equations, Partial Geometry, Non-Euclidean |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0499-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Quasiconformal Mappings""; ""2.1. Analytic Definition of Quasiconformality""; ""2.2. The Beltrami Equation""; ""2.3. Radial Stretchings""; ""2.4. Classical Regularity Theory""; ""Chapter 3. Partial Differential Equations""; ""3.1. The Transformation Formula""; ""3.2. A Fundamental Example""; ""3.3. The Construction""; ""3.4. Cavitation and Riemann Surfaces""; ""Chapter 4. Mappings of Finite Distortion""; ""4.1. Orlicz-Sobolev Spaces""; ""4.2. Monotonicity""; ""4.3. A Class of Orlicz Functions""; ""4.4. The Monotonicity Theorem""
""4.5. Modulus of Continuity""""Chapter 5. Hardy Spaces and BMO""; ""5.1. Mollifiers""; ""5.2. Hardy-Orlicz Spaces""; ""5.3. BMO""; ""5.4. L log L�Integr ability""; ""5.5. Liouville Type Theorems""; ""Chapter 6. The Principal Solution""; ""6.1. Solutions""; ""6.2. Uniqueness of Principal Solutions""; ""6.3. Stoilow Factorization""; ""Chapter 7. Solutions for Integrable Distortion""; ""7.1. Distortion in the Exponential Class""; ""7.2. An Example""; ""7.3. Results""; ""7.4. Distortion in the Subexponential Class""; ""7.5. An Example""; ""7.6. Further Generalities""; ""7.7. Existence Theory"" ""7.8. Global Solutions""""7.9. Holomorphic Dependence""; ""7.10. Examples and Non-Uniqueness""; ""7.11. Equations in the Plane""; ""7.12. Compactness""; ""7.13. Removable Singularities""; ""7.14. Final Comments""; ""Chapter 8. Some Technical Results""; ""8.1. The Divergence Condition""; ""8.2. Integration by Parts""; ""8.3. Higher Integrability""; ""Bibliography"" |
Record Nr. | UNINA-9910479858003321 |
Iwaniec Tadeusz | ||
Providence, Rhode Island : , : American Mathematical Society, , [2008] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The Beltrami equation / / Tadeusz Iwaniec, Gaven Martin |
Autore | Iwaniec Tadeusz |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2008] |
Descrizione fisica | 1 online resource (110 p.) |
Disciplina | 515.3533 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Conformal mapping
Differential equations, Partial Geometry, Non-Euclidean |
ISBN | 1-4704-0499-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Quasiconformal Mappings""; ""2.1. Analytic Definition of Quasiconformality""; ""2.2. The Beltrami Equation""; ""2.3. Radial Stretchings""; ""2.4. Classical Regularity Theory""; ""Chapter 3. Partial Differential Equations""; ""3.1. The Transformation Formula""; ""3.2. A Fundamental Example""; ""3.3. The Construction""; ""3.4. Cavitation and Riemann Surfaces""; ""Chapter 4. Mappings of Finite Distortion""; ""4.1. Orlicz-Sobolev Spaces""; ""4.2. Monotonicity""; ""4.3. A Class of Orlicz Functions""; ""4.4. The Monotonicity Theorem""
""4.5. Modulus of Continuity""""Chapter 5. Hardy Spaces and BMO""; ""5.1. Mollifiers""; ""5.2. Hardy-Orlicz Spaces""; ""5.3. BMO""; ""5.4. L log L�Integr ability""; ""5.5. Liouville Type Theorems""; ""Chapter 6. The Principal Solution""; ""6.1. Solutions""; ""6.2. Uniqueness of Principal Solutions""; ""6.3. Stoilow Factorization""; ""Chapter 7. Solutions for Integrable Distortion""; ""7.1. Distortion in the Exponential Class""; ""7.2. An Example""; ""7.3. Results""; ""7.4. Distortion in the Subexponential Class""; ""7.5. An Example""; ""7.6. Further Generalities""; ""7.7. Existence Theory"" ""7.8. Global Solutions""""7.9. Holomorphic Dependence""; ""7.10. Examples and Non-Uniqueness""; ""7.11. Equations in the Plane""; ""7.12. Compactness""; ""7.13. Removable Singularities""; ""7.14. Final Comments""; ""Chapter 8. Some Technical Results""; ""8.1. The Divergence Condition""; ""8.2. Integration by Parts""; ""8.3. Higher Integrability""; ""Bibliography"" |
Record Nr. | UNINA-9910788851203321 |
Iwaniec Tadeusz | ||
Providence, Rhode Island : , : American Mathematical Society, , [2008] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
The Beltrami equation / / Tadeusz Iwaniec, Gaven Martin |
Autore | Iwaniec Tadeusz |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2008] |
Descrizione fisica | 1 online resource (110 p.) |
Disciplina | 515.3533 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Conformal mapping
Differential equations, Partial Geometry, Non-Euclidean |
ISBN | 1-4704-0499-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Chapter 1. Introduction""; ""Chapter 2. Quasiconformal Mappings""; ""2.1. Analytic Definition of Quasiconformality""; ""2.2. The Beltrami Equation""; ""2.3. Radial Stretchings""; ""2.4. Classical Regularity Theory""; ""Chapter 3. Partial Differential Equations""; ""3.1. The Transformation Formula""; ""3.2. A Fundamental Example""; ""3.3. The Construction""; ""3.4. Cavitation and Riemann Surfaces""; ""Chapter 4. Mappings of Finite Distortion""; ""4.1. Orlicz-Sobolev Spaces""; ""4.2. Monotonicity""; ""4.3. A Class of Orlicz Functions""; ""4.4. The Monotonicity Theorem""
""4.5. Modulus of Continuity""""Chapter 5. Hardy Spaces and BMO""; ""5.1. Mollifiers""; ""5.2. Hardy-Orlicz Spaces""; ""5.3. BMO""; ""5.4. L log L�Integr ability""; ""5.5. Liouville Type Theorems""; ""Chapter 6. The Principal Solution""; ""6.1. Solutions""; ""6.2. Uniqueness of Principal Solutions""; ""6.3. Stoilow Factorization""; ""Chapter 7. Solutions for Integrable Distortion""; ""7.1. Distortion in the Exponential Class""; ""7.2. An Example""; ""7.3. Results""; ""7.4. Distortion in the Subexponential Class""; ""7.5. An Example""; ""7.6. Further Generalities""; ""7.7. Existence Theory"" ""7.8. Global Solutions""""7.9. Holomorphic Dependence""; ""7.10. Examples and Non-Uniqueness""; ""7.11. Equations in the Plane""; ""7.12. Compactness""; ""7.13. Removable Singularities""; ""7.14. Final Comments""; ""Chapter 8. Some Technical Results""; ""8.1. The Divergence Condition""; ""8.2. Integration by Parts""; ""8.3. Higher Integrability""; ""Bibliography"" |
Record Nr. | UNINA-9910828650603321 |
Iwaniec Tadeusz | ||
Providence, Rhode Island : , : American Mathematical Society, , [2008] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
n-harmonic mappings between annuli : the art of integrating free Lagrangians / / Tadeusz Iwaniec, Jani Onninen |
Autore | Iwaniec Tadeusz |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2012 |
Descrizione fisica | 1 online resource (105 p.) |
Disciplina | 516.3/62 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Quasiconformal mappings
Extremal problems (Mathematics) |
Soggetto genere / forma | Electronic books. |
ISBN | 0-8218-9008-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Preface""; ""Chapter 1. Introduction and Overview""; ""1. Basic notation""; ""2. Mathematical model of hyperelasticity""; ""3. Variational integrals in GFT""; ""4. Conformal energy""; ""5. Weak limits of homeomorphisms""; ""6. Annuli""; ""7. Hammering a part of an annulus into a circle, n=2""; ""8. Principal n-harmonics""; ""9. Elasticity of stretching""; ""10. Conformally expanding pair""; ""11. Conformally contracting pair""; ""12. The conformal case Mod A = Mod A""; ""13. The energy function Fh""; ""14. Free Lagrangians""; ""15. Uniqueness""
""16. The L1-theory of inner distortion""""Conclusion""; ""Part 1. Principal Radial n-Harmonics""; ""Chapter 2. Nonexistence of n-Harmonic Homeomorphisms""; ""Chapter 3. Generalized n-Harmonic Mappings""; ""1. Solutions to the generalized n-harmonic equation that are not n-harmonic""; ""2. Slipping along the boundaries""; ""3. Proof of Theorem 1.7""; ""Chapter 4. Notation""; ""1. Annuli and their modulus""; ""2. Polar coordinates in Rn""; ""3. Spherical coordinates, latitude and longitude""; ""4. Radial stretching""; ""5. Spherical mappings""; ""Chapter 5. Radial n-Harmonics"" ""1. The n-Laplacian for the strain function""""2. The principal solutions""; ""3. The elasticity function""; ""4. The principal solution H+ (conformal contraction)""; ""5. The principal solution H- (conformal expansion)""; ""6. The boundary value problem for radial n-harmonics""; ""Chapter 6. Vector Calculus on Annuli""; ""1. Radial and spherical derivatives""; ""2. Some differential forms""; ""Chapter 7. Free Lagrangians""; ""Chapter 8. Some Estimates of Free Lagrangians""; ""1. The Fh-energy integral with operator norm""; ""2. Radial symmetry""; ""3. Proof of Theorem 1.14"" ""1. Extremal deformations of the sphere """"2. Random variable setting""; ""3. Pulling back a homothety via stereographic projection""; ""4. Back to the variational integral T[]""; ""5. The failure of radial symmetry, Proof of Theorem 1.11""; ""Chapter 15. Quasiconformal Mappings between Annuli""; ""Bibliography"" |
Record Nr. | UNINA-9910480412403321 |
Iwaniec Tadeusz | ||
Providence, Rhode Island : , : American Mathematical Society, , 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
n-harmonic mappings between annuli : the art of integrating free Lagrangians / / Tadeusz Iwaniec, Jani Onninen |
Autore | Iwaniec Tadeusz |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2012 |
Descrizione fisica | 1 online resource (105 p.) |
Disciplina | 516.3/62 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Quasiconformal mappings
Extremal problems (Mathematics) |
ISBN | 0-8218-9008-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Preface""; ""Chapter 1. Introduction and Overview""; ""1. Basic notation""; ""2. Mathematical model of hyperelasticity""; ""3. Variational integrals in GFT""; ""4. Conformal energy""; ""5. Weak limits of homeomorphisms""; ""6. Annuli""; ""7. Hammering a part of an annulus into a circle, n=2""; ""8. Principal n-harmonics""; ""9. Elasticity of stretching""; ""10. Conformally expanding pair""; ""11. Conformally contracting pair""; ""12. The conformal case Mod A = Mod A""; ""13. The energy function Fh""; ""14. Free Lagrangians""; ""15. Uniqueness""
""16. The L1-theory of inner distortion""""Conclusion""; ""Part 1. Principal Radial n-Harmonics""; ""Chapter 2. Nonexistence of n-Harmonic Homeomorphisms""; ""Chapter 3. Generalized n-Harmonic Mappings""; ""1. Solutions to the generalized n-harmonic equation that are not n-harmonic""; ""2. Slipping along the boundaries""; ""3. Proof of Theorem 1.7""; ""Chapter 4. Notation""; ""1. Annuli and their modulus""; ""2. Polar coordinates in Rn""; ""3. Spherical coordinates, latitude and longitude""; ""4. Radial stretching""; ""5. Spherical mappings""; ""Chapter 5. Radial n-Harmonics"" ""1. The n-Laplacian for the strain function""""2. The principal solutions""; ""3. The elasticity function""; ""4. The principal solution H+ (conformal contraction)""; ""5. The principal solution H- (conformal expansion)""; ""6. The boundary value problem for radial n-harmonics""; ""Chapter 6. Vector Calculus on Annuli""; ""1. Radial and spherical derivatives""; ""2. Some differential forms""; ""Chapter 7. Free Lagrangians""; ""Chapter 8. Some Estimates of Free Lagrangians""; ""1. The Fh-energy integral with operator norm""; ""2. Radial symmetry""; ""3. Proof of Theorem 1.14"" ""1. Extremal deformations of the sphere """"2. Random variable setting""; ""3. Pulling back a homothety via stereographic projection""; ""4. Back to the variational integral T[]""; ""5. The failure of radial symmetry, Proof of Theorem 1.11""; ""Chapter 15. Quasiconformal Mappings between Annuli""; ""Bibliography"" |
Record Nr. | UNINA-9910788618103321 |
Iwaniec Tadeusz | ||
Providence, Rhode Island : , : American Mathematical Society, , 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
n-harmonic mappings between annuli : the art of integrating free Lagrangians / / Tadeusz Iwaniec, Jani Onninen |
Autore | Iwaniec Tadeusz |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2012 |
Descrizione fisica | 1 online resource (105 p.) |
Disciplina | 516.3/62 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Quasiconformal mappings
Extremal problems (Mathematics) |
ISBN | 0-8218-9008-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Preface""; ""Chapter 1. Introduction and Overview""; ""1. Basic notation""; ""2. Mathematical model of hyperelasticity""; ""3. Variational integrals in GFT""; ""4. Conformal energy""; ""5. Weak limits of homeomorphisms""; ""6. Annuli""; ""7. Hammering a part of an annulus into a circle, n=2""; ""8. Principal n-harmonics""; ""9. Elasticity of stretching""; ""10. Conformally expanding pair""; ""11. Conformally contracting pair""; ""12. The conformal case Mod A = Mod A""; ""13. The energy function Fh""; ""14. Free Lagrangians""; ""15. Uniqueness""
""16. The L1-theory of inner distortion""""Conclusion""; ""Part 1. Principal Radial n-Harmonics""; ""Chapter 2. Nonexistence of n-Harmonic Homeomorphisms""; ""Chapter 3. Generalized n-Harmonic Mappings""; ""1. Solutions to the generalized n-harmonic equation that are not n-harmonic""; ""2. Slipping along the boundaries""; ""3. Proof of Theorem 1.7""; ""Chapter 4. Notation""; ""1. Annuli and their modulus""; ""2. Polar coordinates in Rn""; ""3. Spherical coordinates, latitude and longitude""; ""4. Radial stretching""; ""5. Spherical mappings""; ""Chapter 5. Radial n-Harmonics"" ""1. The n-Laplacian for the strain function""""2. The principal solutions""; ""3. The elasticity function""; ""4. The principal solution H+ (conformal contraction)""; ""5. The principal solution H- (conformal expansion)""; ""6. The boundary value problem for radial n-harmonics""; ""Chapter 6. Vector Calculus on Annuli""; ""1. Radial and spherical derivatives""; ""2. Some differential forms""; ""Chapter 7. Free Lagrangians""; ""Chapter 8. Some Estimates of Free Lagrangians""; ""1. The Fh-energy integral with operator norm""; ""2. Radial symmetry""; ""3. Proof of Theorem 1.14"" ""1. Extremal deformations of the sphere """"2. Random variable setting""; ""3. Pulling back a homothety via stereographic projection""; ""4. Back to the variational integral T[]""; ""5. The failure of radial symmetry, Proof of Theorem 1.11""; ""Chapter 15. Quasiconformal Mappings between Annuli""; ""Bibliography"" |
Record Nr. | UNINA-9910828788503321 |
Iwaniec Tadeusz | ||
Providence, Rhode Island : , : American Mathematical Society, , 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|