Natural biodynamics [[electronic resource] /] / Vladimir G. Ivancevic, Tijana T. Ivancevic |
Autore | Ivancevic Vladimir G |
Pubbl/distr/stampa | Hackensack, N.J., : World Scientific, c2005 |
Descrizione fisica | 1 online resource (1036 p.) |
Disciplina | 612 |
Altri autori (Persone) | IvancevicTijana T |
Soggetto topico |
Human physiology
Human biology Human physiology - Mathematical models Human biology - Mathematical models |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-89915-1
9786611899158 981-270-316-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface; Glossary of Frequently Used Symbols; Contents; 1. Introduction; 2. Natural Language of Biodynamics; 3. Natural Geometry of Biodynamics; 4. Natural Mechanics of Biodynamics; 5. Natural Topology of Biodynamics; 6. Natural Control and Self-organization in Biodynamics; 7. Natural Brain Dynamics and Sensory-Motor Integration; Appendix A; Bibliography; Index |
Record Nr. | UNINA-9910450734003321 |
Ivancevic Vladimir G
![]() |
||
Hackensack, N.J., : World Scientific, c2005 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Natural biodynamics [[electronic resource] /] / Vladimir G. Ivancevic, Tijana T. Ivancevic |
Autore | Ivancevic Vladimir G |
Pubbl/distr/stampa | Hackensack, N.J., : World Scientific, c2005 |
Descrizione fisica | 1 online resource (1036 p.) |
Disciplina | 612 |
Altri autori (Persone) | IvancevicTijana T |
Soggetto topico |
Human physiology
Human biology Human physiology - Mathematical models Human biology - Mathematical models |
ISBN |
1-281-89915-1
9786611899158 981-270-316-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface; Glossary of Frequently Used Symbols; Contents; 1. Introduction; 2. Natural Language of Biodynamics; 3. Natural Geometry of Biodynamics; 4. Natural Mechanics of Biodynamics; 5. Natural Topology of Biodynamics; 6. Natural Control and Self-organization in Biodynamics; 7. Natural Brain Dynamics and Sensory-Motor Integration; Appendix A; Bibliography; Index |
Record Nr. | UNINA-9910784048003321 |
Ivancevic Vladimir G
![]() |
||
Hackensack, N.J., : World Scientific, c2005 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Quantum leap [[electronic resource] ] : from Dirac and Feynman, across the universe, to human body and mind / / Vladimir G. Ivancevic, Tijana T. Ivancevic |
Autore | Ivancevic Vladimir G |
Pubbl/distr/stampa | Hackensack, NJ, : World Scientific, c2008 |
Descrizione fisica | 1 online resource (856 p.) |
Disciplina |
530.1/2
530.12 |
Altri autori (Persone) | IvancevicTijana T |
Soggetto topico |
Consciousness
Feynman integrals Mind and body Physics - Philosophy Quantum field theory Quantum theory |
Soggetto genere / forma | Electronic books. |
ISBN | 981-281-928-2 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Acknowledgments; Contents; 1. Introduction; 1.1 Soft Introduction to Quantum Mechanics; 1.2 Hilbert Space; 1.2.1 Quantum Hilbert Space; 1.2.2 Formal Hilbert Space; 1.3 Human Intelligence, Mind and Reason; 1.3.0.1 Human Reason; 2. Elements of Quantum Mechanics; 2.1 Basics of Non-Relativistic Quantum Mechanics; 2.1.1 Canonical Quantization; 2.1.2 Quantum States and Operators; 2.1.3 Quantum Pictures; 2.1.4 Spectrum of a Quantum Operator; 2.1.5 General Representation Model; 2.1.6 Direct Product Space; 2.1.7 State-Space for n Quantum Particles
2.2 Relativistic Quantum Mechanics and Electrodynamics2.2.1 Difficulties of the Relativistic Quantum Mechanics; 2.2.2 Particles of Half-Odd Integral Spin; 2.2.3 Particles of Integral Spin; 2.2.4 Dirac's Electrodynamics Action Principle; 2.2.5 Dirac Equation and Formal QED in Brief; 2.2.6 Lorentzian Space-Time and Gravity; 2.2.7 Unification of Fundamental Interactions; 2.2.7.1 First Unification; 3. Feynman Path Integrals; 3.1 Path Integrals: Sums Over Histories; 3.1.1 Intuition Behind a Path Integral; 3.1.1.1 Classical Probability Concept; 3.1.1.2 Quantum Probability Concept 3.1.4 Statistical Mechanics via Path Integrals3.1.5 Path-Integral Monte-Carlo Simulation; 3.1.6 Sum over Geometries and Topologies; 3.1.6.1 Simplicial Quantum Geometry; 3.1.6.2 Discrete Gravitational Path Integrals; 3.1.6.3 Regge Calculus; 3.1.6.4 Lorentzian Path Integral; 3.2 Dynamics of Quantum Fields; 3.2.1 Path Integrals and Green's Functions; 3.2.2 Topological Quantum Field Theory; 3.2.3 TQFT and Seiberg-Witten Theory; 3.2.3.1 SW Invariants and Monopole Equations; 3.2.3.2 Topological Lagrangian; 3.2.3.3 Quantum Field Theory; 3.2.3.4 Dimensional Reduction and 3D Field Theory 3.2.3.5 Geometrical Interpretation3.2.4 TQFTs Associated with SW-Monopoles; 3.2.4.1 Dimensional Reduction; 3.2.4.2 TQFTs of 3D Monopoles; 3.2.4.3 Non-Abelian Case; 3.3 Stringy Geometrodynamics; 3.3.1 Stringy Actions and Amplitudes; 3.3.1.1 Strings; 3.3.1.2 Interactions; 3.3.1.3 Loop Topology of Closed Surfaces; 3.3.2 Transition Amplitudes for Strings; 3.3.3 Weyl Invariance and Vertex Operator Formulation; 3.3.4 More General Stringy Actions; 3.3.5 Transition Amplitude for a Single Point Particle; 3.3.6 Witten's Open String Field Theory; 3.3.6.1 Operator Formulation of String Field Theory 3.3.6.2 Open Strings |
Record Nr. | UNINA-9910455052303321 |
Ivancevic Vladimir G
![]() |
||
Hackensack, NJ, : World Scientific, c2008 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Quantum leap [[electronic resource] ] : from Dirac and Feynman, across the universe, to human body and mind / / Vladimir G. Ivancevic, Tijana T. Ivancevic |
Autore | Ivancevic Vladimir G |
Pubbl/distr/stampa | Hackensack, NJ, : World Scientific, c2008 |
Descrizione fisica | 1 online resource (856 p.) |
Disciplina |
530.1/2
530.12 |
Altri autori (Persone) | IvancevicTijana T |
Soggetto topico |
Consciousness
Feynman integrals Mind and body Physics - Philosophy Quantum field theory Quantum theory |
ISBN | 981-281-928-2 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Acknowledgments; Contents; 1. Introduction; 1.1 Soft Introduction to Quantum Mechanics; 1.2 Hilbert Space; 1.2.1 Quantum Hilbert Space; 1.2.2 Formal Hilbert Space; 1.3 Human Intelligence, Mind and Reason; 1.3.0.1 Human Reason; 2. Elements of Quantum Mechanics; 2.1 Basics of Non-Relativistic Quantum Mechanics; 2.1.1 Canonical Quantization; 2.1.2 Quantum States and Operators; 2.1.3 Quantum Pictures; 2.1.4 Spectrum of a Quantum Operator; 2.1.5 General Representation Model; 2.1.6 Direct Product Space; 2.1.7 State-Space for n Quantum Particles
2.2 Relativistic Quantum Mechanics and Electrodynamics2.2.1 Difficulties of the Relativistic Quantum Mechanics; 2.2.2 Particles of Half-Odd Integral Spin; 2.2.3 Particles of Integral Spin; 2.2.4 Dirac's Electrodynamics Action Principle; 2.2.5 Dirac Equation and Formal QED in Brief; 2.2.6 Lorentzian Space-Time and Gravity; 2.2.7 Unification of Fundamental Interactions; 2.2.7.1 First Unification; 3. Feynman Path Integrals; 3.1 Path Integrals: Sums Over Histories; 3.1.1 Intuition Behind a Path Integral; 3.1.1.1 Classical Probability Concept; 3.1.1.2 Quantum Probability Concept 3.1.4 Statistical Mechanics via Path Integrals3.1.5 Path-Integral Monte-Carlo Simulation; 3.1.6 Sum over Geometries and Topologies; 3.1.6.1 Simplicial Quantum Geometry; 3.1.6.2 Discrete Gravitational Path Integrals; 3.1.6.3 Regge Calculus; 3.1.6.4 Lorentzian Path Integral; 3.2 Dynamics of Quantum Fields; 3.2.1 Path Integrals and Green's Functions; 3.2.2 Topological Quantum Field Theory; 3.2.3 TQFT and Seiberg-Witten Theory; 3.2.3.1 SW Invariants and Monopole Equations; 3.2.3.2 Topological Lagrangian; 3.2.3.3 Quantum Field Theory; 3.2.3.4 Dimensional Reduction and 3D Field Theory 3.2.3.5 Geometrical Interpretation3.2.4 TQFTs Associated with SW-Monopoles; 3.2.4.1 Dimensional Reduction; 3.2.4.2 TQFTs of 3D Monopoles; 3.2.4.3 Non-Abelian Case; 3.3 Stringy Geometrodynamics; 3.3.1 Stringy Actions and Amplitudes; 3.3.1.1 Strings; 3.3.1.2 Interactions; 3.3.1.3 Loop Topology of Closed Surfaces; 3.3.2 Transition Amplitudes for Strings; 3.3.3 Weyl Invariance and Vertex Operator Formulation; 3.3.4 More General Stringy Actions; 3.3.5 Transition Amplitude for a Single Point Particle; 3.3.6 Witten's Open String Field Theory; 3.3.6.1 Operator Formulation of String Field Theory 3.3.6.2 Open Strings |
Record Nr. | UNINA-9910778073803321 |
Ivancevic Vladimir G
![]() |
||
Hackensack, NJ, : World Scientific, c2008 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|