top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Computational logic in multi-agent systems : 7th international workshop, CLIMA VII, Hakodate, Japan, May 8-9, 2006 : revised selected and invited papers / / Katsumi Inoue, Ken Satoh, Francesca Toni (editors)
Computational logic in multi-agent systems : 7th international workshop, CLIMA VII, Hakodate, Japan, May 8-9, 2006 : revised selected and invited papers / / Katsumi Inoue, Ken Satoh, Francesca Toni (editors)
Edizione [1st ed. 2007.]
Pubbl/distr/stampa Berlin ; ; Heidelberg : , : Springer, , [2007]
Descrizione fisica 1 online resource (X, 318 p.)
Disciplina 004.015113
Collana Lecture notes in artificial intelligence
Soggetto topico Computer logic
ISBN 1-280-86404-4
9786610864041
3-540-69619-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Regular Papers -- Acts of Commanding and Changing Obligations -- Hierarchical Decision Making in Multi-agent Systems Using Answer Set Programming -- On a Linear Framework for Belief Dynamics in Multi-agent Environments -- Answer Set Programming for Representing and Reasoning About Virtual Institutions -- A Complete Probabilistic Belief Logic -- Prototyping 3APL in the Maude Term Rewriting Language -- Dialogue Game Tree with Nondeterministic Additive Consolidation -- Representing and Verifying Temporal Epistemic Properties in Multi-Agent Systems -- A New Logical Semantics for Agent Communication -- Contextual Reasoning in Agent Systems -- An Argumentation-Based Negotiation for Distributed Extended Logic Programs -- Belief Updating by Communication Channel -- On the Implementation of Global Abduction -- Adding Evolving Abilities to a Multi-Agent System -- Contest Papers -- The Second Contest on Multi-Agent Systems Based on Computational Logic -- Using Antimodels to Define Agents’ Strategy -- Multi-Agent FLUX for the Gold Mining Domain (System Description) -- Using Jason to Implement a Team of Gold Miners.
Record Nr. UNINA-9910484635303321
Berlin ; ; Heidelberg : , : Springer, , [2007]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational logic in multi-agent systems : 7th international workshop, CLIMA VII, Hakodate, Japan, May 8-9, 2006 : revised selected and invited papers / / Katsumi Inoue, Ken Satoh, Francesca Toni (editors)
Computational logic in multi-agent systems : 7th international workshop, CLIMA VII, Hakodate, Japan, May 8-9, 2006 : revised selected and invited papers / / Katsumi Inoue, Ken Satoh, Francesca Toni (editors)
Edizione [1st ed. 2007.]
Pubbl/distr/stampa Berlin ; ; Heidelberg : , : Springer, , [2007]
Descrizione fisica 1 online resource (X, 318 p.)
Disciplina 004.015113
Collana Lecture notes in artificial intelligence
Soggetto topico Computer logic
ISBN 1-280-86404-4
9786610864041
3-540-69619-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Regular Papers -- Acts of Commanding and Changing Obligations -- Hierarchical Decision Making in Multi-agent Systems Using Answer Set Programming -- On a Linear Framework for Belief Dynamics in Multi-agent Environments -- Answer Set Programming for Representing and Reasoning About Virtual Institutions -- A Complete Probabilistic Belief Logic -- Prototyping 3APL in the Maude Term Rewriting Language -- Dialogue Game Tree with Nondeterministic Additive Consolidation -- Representing and Verifying Temporal Epistemic Properties in Multi-Agent Systems -- A New Logical Semantics for Agent Communication -- Contextual Reasoning in Agent Systems -- An Argumentation-Based Negotiation for Distributed Extended Logic Programs -- Belief Updating by Communication Channel -- On the Implementation of Global Abduction -- Adding Evolving Abilities to a Multi-Agent System -- Contest Papers -- The Second Contest on Multi-Agent Systems Based on Computational Logic -- Using Antimodels to Define Agents’ Strategy -- Multi-Agent FLUX for the Gold Mining Domain (System Description) -- Using Jason to Implement a Team of Gold Miners.
Record Nr. UNISA-996465871603316
Berlin ; ; Heidelberg : , : Springer, , [2007]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Inductive Logic Programming [[electronic resource] ] : 25th International Conference, ILP 2015, Kyoto, Japan, August 20-22, 2015, Revised Selected Papers / / edited by Katsumi Inoue, Hayato Ohwada, Akihiro Yamamoto
Inductive Logic Programming [[electronic resource] ] : 25th International Conference, ILP 2015, Kyoto, Japan, August 20-22, 2015, Revised Selected Papers / / edited by Katsumi Inoue, Hayato Ohwada, Akihiro Yamamoto
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (X, 215 p. 56 illus.)
Disciplina 005.115
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Mathematical logic
Artificial intelligence
Computer programming
Computer logic
Data mining
Mathematical Logic and Formal Languages
Artificial Intelligence
Programming Techniques
Logics and Meanings of Programs
Data Mining and Knowledge Discovery
ISBN 3-319-40566-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents -- Relational Kernel-Based Grasping with Numerical Features -- 1 Introduction -- 2 The Robot Grasping Scenario and Grasping Primitives -- 3 Relational Grasping: Problem Formulation -- 3.1 Data Modeling -- 3.2 Declarative and Relational Feature Construction -- 3.3 The Relational Problem Definition -- 3.4 Graphicalization -- 4 Relational Kernel Features -- 5 Experiments -- 5.1 Dataset and Evaluation -- 5.2 Results and Discussion -- 6 Related Work -- 7 Conclusions -- References -- CARAF: Complex Aggregates within Random Forests -- 1 Introduction and Context -- 2 Complex Aggregates -- 3 Random Forests -- 4 CARAF: Complex Aggregates with RAndom Forests -- 5 Experimental Results -- 6 Aggregation Processes Selection with Random Forests -- 7 Conclusion and Future Work -- References -- Distributed Parameter Learning for Probabilistic Ontologies -- 1 Introduction -- 2 Description Logics -- 3 Semantics and Reasoning in Probabilistic DLs -- 4 Parameter Learning for Probabilistic DLs -- 5 Distributed Parameter Learning for Probabilistic DLs -- 5.1 Architecture -- 5.2 MapReduce View -- 5.3 Scheduling Techniques -- 5.4 Overall EDGEMR -- 6 Experiments -- 7 Related Work -- 8 Conclusions -- References -- Meta-Interpretive Learning of Data Transformation Programs -- 1 Introduction -- 2 Related Work -- 3 Framework -- 4 Implementation -- 4.1 Transformation Language -- 5 Experiments -- 5.1 XML Data Transformations -- 5.2 Ecological Scholarly Papers -- 5.3 Patient Medical Records -- 6 Conclusion and Further Work -- A Appendix 1 -- B Appendix 2 -- References -- Statistical Relational Learning with Soft Quantifiers -- 1 Introduction -- 2 PSLQ: PSL with Soft Quantifiers -- 3 Inference and Weight Learning in PSLQ -- 3.1 Inference -- 3.2 Weight Learning -- 4 Evaluation: Trust Link Prediction -- 5 Conclusion -- References.
Ontology Learning from Interpretations in Lightweight Description Logics -- 1 Introduction -- 2 Description Logic Preliminaries -- 3 Learning Model -- 4 Finite Learning Sets -- 5 Learning Algorithms -- 6 Related Work -- 7 Conclusions and Outlook -- References -- Constructing Markov Logic Networks from First-Order Default Rules -- 1 Introduction -- 2 Background -- 2.1 Markov Logic Networks -- 2.2 Reasoning About Default Rules in System P -- 3 Encoding Ground Default Theories in Markov Logic -- 4 Encoding Non-ground Default Theories in Markov Logic -- 5 Evaluation -- 6 Conclusion -- A Proofs -- References -- Mine 'Em All: A Note on Mining All Graphs -- 1 Introduction -- 2 Preliminaries -- 3 Graph Mining Problems -- 4 Mining All (Induced) Subgraphs -- 4.1 Negative Results -- 4.2 Positive Results for ALLF I and ALLS L -- 4.3 Positive Results for ALLL S -- 4.4 Other Negative Results -- 5 Mining Under Homeomorphism and Minor Embedding -- 6 Conclusions and Future Work -- References -- Processing Markov Logic Networks with GPUs: Accelerating Network Grounding -- 1 Introduction -- 2 Markov Logic, Tuffy, Datalog and GPUs -- 2.1 Inference in Markov Logic -- 2.2 Optimizations -- 2.3 Learning -- 2.4 Tuffy -- 2.5 Evaluation of Datalog Programs -- 2.6 GPU Architecture and Programming -- 3 Our GPU-Based Markov Logic Platform -- 4 Experimental Evaluation -- 4.1 Applications and Hardware-Software Platform -- 4.2 Results -- 5 Related Work -- 6 Conclusions -- References -- Using ILP to Identify Pathway Activation Patterns in Systems Biology -- 1 Introduction and Background -- 2 Overview of Propositionalization -- 3 Methods -- 3.1 Raw Data -- 3.2 Data Processing -- 3.3 Searching for Pathway Activation Patterns -- 4 Results -- 4.1 Quantitative Evaluation and Comparison with SBV Improver Model -- 4.2 Results for Warmr Method.
4.3 Results for Warmr/TreeLiker Combined Method -- 5 Conclusions -- References -- kProbLog: An Algebraic Prolog for Kernel Programming -- 1 Introduction -- 2 KProbLogS -- 3 kProbLog -- 3.1 Recursive kProbLog Program with Meta-Functions -- 3.2 The Jacobi Method -- 3.3 kProbLog TP-Operator with Meta-Functions -- 4 kProbLogS[x] -- 4.1 Polynomials for Feature Extraction -- 4.2 The @id Meta-Function -- 5 Graph Kernels -- 5.1 Weisfeiler-Lehman Graph Kernel and Propagation Kernels -- 5.2 Graph Invariant Kernels -- 6 Conclusions -- References -- An Exercise in Declarative Modeling for Relational Query Mining -- 1 Introduction -- 2 Problem Statement -- 3 Encoding -- 4 First Order Model -- 5 Experiments -- 6 Model Discussion and Generalization -- 7 Related Work -- 8 Conclusions -- A Appendix: Introduction to IDP -- References -- Learning Inference by Induction -- 1 Introduction -- 2 Learning Logical Inference -- 2.1 Learning Logics -- 2.2 Learning from 1-Step Transitions -- 2.3 Learning Deduction Rules by LF1T -- 3 Learning Non-logical Inference Rules -- 3.1 Abduction -- 3.2 Frame Axiom -- 3.3 Conversational Implicature -- 4 Discussion -- 5 Conclusion -- References -- Identification of Transition Models of Biological Systems in the Presence of Transition Noise -- 1 Introduction -- 2 Transition Identification Under Transition Noise -- 3 Empirical Evaluation -- 3.1 Problems -- 3.2 Data -- 3.3 Models -- 3.4 Algorithms and Machines -- 3.5 Method -- 3.6 Results -- 3.7 Transition Identification Worked Example: Water -- 4 Related Work -- 5 Conclusion -- References -- Author Index.
Record Nr. UNISA-996466006103316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Inductive Logic Programming : 25th International Conference, ILP 2015, Kyoto, Japan, August 20-22, 2015, Revised Selected Papers / / edited by Katsumi Inoue, Hayato Ohwada, Akihiro Yamamoto
Inductive Logic Programming : 25th International Conference, ILP 2015, Kyoto, Japan, August 20-22, 2015, Revised Selected Papers / / edited by Katsumi Inoue, Hayato Ohwada, Akihiro Yamamoto
Edizione [1st ed. 2016.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Descrizione fisica 1 online resource (X, 215 p. 56 illus.)
Disciplina 005.115
Collana Lecture Notes in Artificial Intelligence
Soggetto topico Mathematical logic
Artificial intelligence
Computer programming
Computer logic
Data mining
Mathematical Logic and Formal Languages
Artificial Intelligence
Programming Techniques
Logics and Meanings of Programs
Data Mining and Knowledge Discovery
ISBN 3-319-40566-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents -- Relational Kernel-Based Grasping with Numerical Features -- 1 Introduction -- 2 The Robot Grasping Scenario and Grasping Primitives -- 3 Relational Grasping: Problem Formulation -- 3.1 Data Modeling -- 3.2 Declarative and Relational Feature Construction -- 3.3 The Relational Problem Definition -- 3.4 Graphicalization -- 4 Relational Kernel Features -- 5 Experiments -- 5.1 Dataset and Evaluation -- 5.2 Results and Discussion -- 6 Related Work -- 7 Conclusions -- References -- CARAF: Complex Aggregates within Random Forests -- 1 Introduction and Context -- 2 Complex Aggregates -- 3 Random Forests -- 4 CARAF: Complex Aggregates with RAndom Forests -- 5 Experimental Results -- 6 Aggregation Processes Selection with Random Forests -- 7 Conclusion and Future Work -- References -- Distributed Parameter Learning for Probabilistic Ontologies -- 1 Introduction -- 2 Description Logics -- 3 Semantics and Reasoning in Probabilistic DLs -- 4 Parameter Learning for Probabilistic DLs -- 5 Distributed Parameter Learning for Probabilistic DLs -- 5.1 Architecture -- 5.2 MapReduce View -- 5.3 Scheduling Techniques -- 5.4 Overall EDGEMR -- 6 Experiments -- 7 Related Work -- 8 Conclusions -- References -- Meta-Interpretive Learning of Data Transformation Programs -- 1 Introduction -- 2 Related Work -- 3 Framework -- 4 Implementation -- 4.1 Transformation Language -- 5 Experiments -- 5.1 XML Data Transformations -- 5.2 Ecological Scholarly Papers -- 5.3 Patient Medical Records -- 6 Conclusion and Further Work -- A Appendix 1 -- B Appendix 2 -- References -- Statistical Relational Learning with Soft Quantifiers -- 1 Introduction -- 2 PSLQ: PSL with Soft Quantifiers -- 3 Inference and Weight Learning in PSLQ -- 3.1 Inference -- 3.2 Weight Learning -- 4 Evaluation: Trust Link Prediction -- 5 Conclusion -- References.
Ontology Learning from Interpretations in Lightweight Description Logics -- 1 Introduction -- 2 Description Logic Preliminaries -- 3 Learning Model -- 4 Finite Learning Sets -- 5 Learning Algorithms -- 6 Related Work -- 7 Conclusions and Outlook -- References -- Constructing Markov Logic Networks from First-Order Default Rules -- 1 Introduction -- 2 Background -- 2.1 Markov Logic Networks -- 2.2 Reasoning About Default Rules in System P -- 3 Encoding Ground Default Theories in Markov Logic -- 4 Encoding Non-ground Default Theories in Markov Logic -- 5 Evaluation -- 6 Conclusion -- A Proofs -- References -- Mine 'Em All: A Note on Mining All Graphs -- 1 Introduction -- 2 Preliminaries -- 3 Graph Mining Problems -- 4 Mining All (Induced) Subgraphs -- 4.1 Negative Results -- 4.2 Positive Results for ALLF I and ALLS L -- 4.3 Positive Results for ALLL S -- 4.4 Other Negative Results -- 5 Mining Under Homeomorphism and Minor Embedding -- 6 Conclusions and Future Work -- References -- Processing Markov Logic Networks with GPUs: Accelerating Network Grounding -- 1 Introduction -- 2 Markov Logic, Tuffy, Datalog and GPUs -- 2.1 Inference in Markov Logic -- 2.2 Optimizations -- 2.3 Learning -- 2.4 Tuffy -- 2.5 Evaluation of Datalog Programs -- 2.6 GPU Architecture and Programming -- 3 Our GPU-Based Markov Logic Platform -- 4 Experimental Evaluation -- 4.1 Applications and Hardware-Software Platform -- 4.2 Results -- 5 Related Work -- 6 Conclusions -- References -- Using ILP to Identify Pathway Activation Patterns in Systems Biology -- 1 Introduction and Background -- 2 Overview of Propositionalization -- 3 Methods -- 3.1 Raw Data -- 3.2 Data Processing -- 3.3 Searching for Pathway Activation Patterns -- 4 Results -- 4.1 Quantitative Evaluation and Comparison with SBV Improver Model -- 4.2 Results for Warmr Method.
4.3 Results for Warmr/TreeLiker Combined Method -- 5 Conclusions -- References -- kProbLog: An Algebraic Prolog for Kernel Programming -- 1 Introduction -- 2 KProbLogS -- 3 kProbLog -- 3.1 Recursive kProbLog Program with Meta-Functions -- 3.2 The Jacobi Method -- 3.3 kProbLog TP-Operator with Meta-Functions -- 4 kProbLogS[x] -- 4.1 Polynomials for Feature Extraction -- 4.2 The @id Meta-Function -- 5 Graph Kernels -- 5.1 Weisfeiler-Lehman Graph Kernel and Propagation Kernels -- 5.2 Graph Invariant Kernels -- 6 Conclusions -- References -- An Exercise in Declarative Modeling for Relational Query Mining -- 1 Introduction -- 2 Problem Statement -- 3 Encoding -- 4 First Order Model -- 5 Experiments -- 6 Model Discussion and Generalization -- 7 Related Work -- 8 Conclusions -- A Appendix: Introduction to IDP -- References -- Learning Inference by Induction -- 1 Introduction -- 2 Learning Logical Inference -- 2.1 Learning Logics -- 2.2 Learning from 1-Step Transitions -- 2.3 Learning Deduction Rules by LF1T -- 3 Learning Non-logical Inference Rules -- 3.1 Abduction -- 3.2 Frame Axiom -- 3.3 Conversational Implicature -- 4 Discussion -- 5 Conclusion -- References -- Identification of Transition Models of Biological Systems in the Presence of Transition Noise -- 1 Introduction -- 2 Transition Identification Under Transition Noise -- 3 Empirical Evaluation -- 3.1 Problems -- 3.2 Data -- 3.3 Models -- 3.4 Algorithms and Machines -- 3.5 Method -- 3.6 Results -- 3.7 Transition Identification Worked Example: Water -- 4 Related Work -- 5 Conclusion -- References -- Author Index.
Record Nr. UNINA-9910482960503321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Logical modeling of biological systems / / edited by Luis Fariñas del Cerro, Katsumi Inoue
Logical modeling of biological systems / / edited by Luis Fariñas del Cerro, Katsumi Inoue
Pubbl/distr/stampa London, [England] ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014
Descrizione fisica 1 online resource (429 p.)
Disciplina 570.28
Collana Bioengineering and Health Science Series
Soggetto topico Biology - Methodology
Biology - Philosophy
Evolution (Biology)
ISBN 1-119-01521-9
1-119-00522-1
1-119-01533-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; Foreword; Chapter 1. Symbolic Representation and Inference of Regulatory Network Structures; 1.1. Introduction: logical modeling and abductive inference in systems biology; 1.2. Logical modeling of regulatory networks; 1.2.1. Background; 1.2.2. Logical model of signed-directed networks; 1.2.2.1. Prior knowledge; 1.2.2.2. Rule-based underlying model; 1.2.2.3. Integrity constraints; 1.2.2.4. Inferring signed-directed networks and explanatory reasoning; 1.3. Evaluation of the ARNI approach; 1.3.1. ARNI predictive power
1.3.1.1. Prediction under biological and experimental noise1.3.1.2. Prediction under incomplete data; 1.3.2. ARNI expressive power; 1.3.2.1. Network motif representations; 1.3.2.2. Representing complex interactions; 1.4. ARNI assisted scientific methodology; 1.4.1. Testing biological hypotheses; 1.4.1.1. Testing cross-talk between signaling pathways; 1.4.2. Informative experiments for networks discrimination; 1.5. Related work and comparison with non-symbolic approaches; 1.5.1. Limitations and future work; 1.6. Conclusions; 1.7. Bibliography
Chapter 2. Reasoning on the Response of Logical Signaling Networks with ASP2.1. Introduction; 2.2. Answer set programming at a glance; 2.3. Learn and control logical networks with ASP; 2.3.1. Preliminaries; 2.3.2. Reasoning on the response of logical networks; 2.3.3. Learning models of immediate-early response; 2.3.4. Minimal intervention strategies; 2.3.5. Software toolbox: caspo; 2.4. Conclusion; 2.5. Acknowledgments; 2.6. Bibliography; Chapter 3. A Logical Model for Molecular Interaction Maps; 3.1. Introduction; 3.2. Biological background; 3.3. Logical model
3.3.1. Activation and inhibition3.3.1.1. Activation and inhibition capacities; 3.3.1.2. Relations between the activation and inhibition causes and effects; 3.3.1.3. Relations between causal relations; 3.3.2. Model extension; 3.3.2.1. Phosphorylation; 3.3.2.2. Autophosphorylation; 3.3.2.3. Binding; 3.3.3. Causality relations redefinition; 3.3.3.1. Activation axioms; 3.3.3.2. Phosphorylation axioms; 3.3.3.3. Autophosphorylation axioms; 3.3.3.4. Binding axioms; 3.3.3.5. Inhibition axioms; 3.4. Quantifier elimination for restricted formulas; 3.4.1. Domain formulas; 3.4.2. Restricted formulas
3.4.3. Completion formulas3.4.4. Domain of domain formulas; 3.4.5. Quantifier elimination procedure; 3.5. Reasoning about interactions in metabolic interaction maps; 3.6. Conclusion and future work; 3.7. Acknowledgments; 3.8. Bibliography; Chapter 4. Analyzing Large Network Dynamics with Process Hitting; 4.1. Introduction/state of the art; 4.1.1. The modeling challenge; 4.1.2. Historical context: Boolean and discrete models; 4.1.3. Analysis issues; 4.1.4. The process hitting framework; 4.1.5. Outline; 4.2. Discrete modeling with the process hitting; 4.2.1. Motivation
4.2.2. The process hitting framework
Record Nr. UNINA-9910132156603321
London, [England] ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Logical modeling of biological systems / / edited by Luis Fariñas del Cerro, Katsumi Inoue
Logical modeling of biological systems / / edited by Luis Fariñas del Cerro, Katsumi Inoue
Pubbl/distr/stampa London, [England] ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014
Descrizione fisica 1 online resource (429 p.)
Disciplina 570.28
Collana Bioengineering and Health Science Series
Soggetto topico Biology - Methodology
Biology - Philosophy
Evolution (Biology)
ISBN 1-119-01521-9
1-119-00522-1
1-119-01533-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; Foreword; Chapter 1. Symbolic Representation and Inference of Regulatory Network Structures; 1.1. Introduction: logical modeling and abductive inference in systems biology; 1.2. Logical modeling of regulatory networks; 1.2.1. Background; 1.2.2. Logical model of signed-directed networks; 1.2.2.1. Prior knowledge; 1.2.2.2. Rule-based underlying model; 1.2.2.3. Integrity constraints; 1.2.2.4. Inferring signed-directed networks and explanatory reasoning; 1.3. Evaluation of the ARNI approach; 1.3.1. ARNI predictive power
1.3.1.1. Prediction under biological and experimental noise1.3.1.2. Prediction under incomplete data; 1.3.2. ARNI expressive power; 1.3.2.1. Network motif representations; 1.3.2.2. Representing complex interactions; 1.4. ARNI assisted scientific methodology; 1.4.1. Testing biological hypotheses; 1.4.1.1. Testing cross-talk between signaling pathways; 1.4.2. Informative experiments for networks discrimination; 1.5. Related work and comparison with non-symbolic approaches; 1.5.1. Limitations and future work; 1.6. Conclusions; 1.7. Bibliography
Chapter 2. Reasoning on the Response of Logical Signaling Networks with ASP2.1. Introduction; 2.2. Answer set programming at a glance; 2.3. Learn and control logical networks with ASP; 2.3.1. Preliminaries; 2.3.2. Reasoning on the response of logical networks; 2.3.3. Learning models of immediate-early response; 2.3.4. Minimal intervention strategies; 2.3.5. Software toolbox: caspo; 2.4. Conclusion; 2.5. Acknowledgments; 2.6. Bibliography; Chapter 3. A Logical Model for Molecular Interaction Maps; 3.1. Introduction; 3.2. Biological background; 3.3. Logical model
3.3.1. Activation and inhibition3.3.1.1. Activation and inhibition capacities; 3.3.1.2. Relations between the activation and inhibition causes and effects; 3.3.1.3. Relations between causal relations; 3.3.2. Model extension; 3.3.2.1. Phosphorylation; 3.3.2.2. Autophosphorylation; 3.3.2.3. Binding; 3.3.3. Causality relations redefinition; 3.3.3.1. Activation axioms; 3.3.3.2. Phosphorylation axioms; 3.3.3.3. Autophosphorylation axioms; 3.3.3.4. Binding axioms; 3.3.3.5. Inhibition axioms; 3.4. Quantifier elimination for restricted formulas; 3.4.1. Domain formulas; 3.4.2. Restricted formulas
3.4.3. Completion formulas3.4.4. Domain of domain formulas; 3.4.5. Quantifier elimination procedure; 3.5. Reasoning about interactions in metabolic interaction maps; 3.6. Conclusion and future work; 3.7. Acknowledgments; 3.8. Bibliography; Chapter 4. Analyzing Large Network Dynamics with Process Hitting; 4.1. Introduction/state of the art; 4.1.1. The modeling challenge; 4.1.2. Historical context: Boolean and discrete models; 4.1.3. Analysis issues; 4.1.4. The process hitting framework; 4.1.5. Outline; 4.2. Discrete modeling with the process hitting; 4.2.1. Motivation
4.2.2. The process hitting framework
Record Nr. UNINA-9910814187903321
London, [England] ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui