top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
1.: Catalysis / editors Inamuddin, Abdullah M. Asiri, Eric Lichtfouse
1.: Catalysis / editors Inamuddin, Abdullah M. Asiri, Eric Lichtfouse
Pubbl/distr/stampa Cham, : Springer, 2020
Descrizione fisica X, 211 p. : ill. ; 24 cm
Disciplina 543(Chimica analitica)
577.14(Chimica ambientale)
541.37(Elettrochimica e magnetochimica)
541.395(Catalisi)
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0238818
Cham, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
1: Properties and Applications in Chemistry / Ali Mohammad, Inamuddin editors
1: Properties and Applications in Chemistry / Ali Mohammad, Inamuddin editors
Pubbl/distr/stampa Dordrecht, : Springer, 2012
Descrizione fisica XVIII, 427 p. : ill. ; 24 cm
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0254066
Dordrecht, : Springer, 2012
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
1:Theory and Materials / Inamuddin, Mohammad Luqman editors
1:Theory and Materials / Inamuddin, Mohammad Luqman editors
Pubbl/distr/stampa Dordrecht, : Springer, 2012
Descrizione fisica XXII, 550 p. : ill. ; 24 cm
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0253907
Dordrecht, : Springer, 2012
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
2: Applications / Inamuddin, Mohammad Luqman editors
2: Applications / Inamuddin, Mohammad Luqman editors
Pubbl/distr/stampa Dordrecht, : Springer, 2012
Descrizione fisica XXXII, 438 p. : ill. ; 24 cm
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0253981
Dordrecht, : Springer, 2012
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
2: Properties and Applications of Ionic Liquids / Ali Mohammad, Inamuddin editors
2: Properties and Applications of Ionic Liquids / Ali Mohammad, Inamuddin editors
Pubbl/distr/stampa Dordrecht, : Springer, 2012
Descrizione fisica XVIII, 506 p. : ill. ; 24 cm
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0255136
Dordrecht, : Springer, 2012
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
2: Technology / editors Inamuddin, Abdullah M. Asiri, Eric Lichtfouse
2: Technology / editors Inamuddin, Abdullah M. Asiri, Eric Lichtfouse
Pubbl/distr/stampa Cham, : Springer, 2020
Descrizione fisica XI, 202 p. : ill. ; 24 cm
Disciplina 543(Chimica analitica)
577.14(Chimica ambientale)
541.37(Elettrochimica e magnetochimica)
541.395(Catalisi)
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0238537
Cham, : Springer, 2020
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Advanced Antimicrobial Materials and Applications / editors Inamuddin, Mohd Imran Ahamed, Ram Prasad
Advanced Antimicrobial Materials and Applications / editors Inamuddin, Mohd Imran Ahamed, Ram Prasad
Pubbl/distr/stampa Singapore, : Springer, 2021
Descrizione fisica VII, 421 p. : ill. ; 24 cm
Disciplina 579.17(Ecologia microbica Ecologia, organismi caratteristici di specifici ambienti)
570(Biologia - Scienze della vita)
571.2(Fisiologia vegetale)
579(Microbiologia)
572.5672(Biochimica delle piante)
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0239642
Singapore, : Springer, 2021
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Advanced Nanotechnology and Application of Supercritical Fluids [[electronic resource] /] / edited by Inamuddin, Abdullah M. Asiri
Advanced Nanotechnology and Application of Supercritical Fluids [[electronic resource] /] / edited by Inamuddin, Abdullah M. Asiri
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (XIV, 245 p. 39 illus., 25 illus. in color.)
Disciplina 660.042
Collana Nanotechnology in the Life Sciences
Soggetto topico Plant breeding
Nanotechnology
Biomedical engineering
Green chemistry
Organic chemistry
Agriculture
Plant Breeding/Biotechnology
Biomedical Engineering/Biotechnology
Green Chemistry
Organic Chemistry
Nanotecnologia
Diòxid de carboni
Indústria
Desenvolupament sostenible
Soggetto genere / forma Llibres electrònics.
ISBN 3-030-44984-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Supercritical Fluid Technologies: A Green Solvent Approach for Pharmaceutical Product Development -- Supercritical Green Solvent for Amazonian Natural Resources -- Non-catalytic and catalytic supercritical water oxidation of phenol in the wastewaters of petroleum and other industries -- Production of Platform Chemicals using Supercritical Fluid Technology -- Supercritical carbon dioxide — a glimpse from the modern era of green chemistry -- Extraction of phenolic compounds by Supercritical fluid extraction -- The Application of Supercritical Carbon Dioxide in the Extraction of Biomolecules -- Chemistry of ionic liquid, switchable solvents, supercritical carbon dioxide and sub/supercritical water -- Applications of supercritical carbon dioxide in the rubber industry -- Compressed fluids for food by-products biorefinery -- Index.
Record Nr. UNINA-9910416104503321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced Redox Flow Technology
Advanced Redox Flow Technology
Autore Inamuddin
Pubbl/distr/stampa John Wiley & Sons, Inc, 2024
ISBN 1-119-90496-X
1-119-90495-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910847601003321
Inamuddin  
John Wiley & Sons, Inc, 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced Redox Flow Technology
Advanced Redox Flow Technology
Autore Inamuddin
Edizione [1st ed.]
Pubbl/distr/stampa John Wiley & Sons, Inc, 2024
Descrizione fisica 1 online resource (266 pages)
ISBN 1-119-90495-1
1-119-90496-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Membranes for Redox Flow Batteries -- 1.1 Introduction -- 1.2 Membranes Used in Aqueous Organic Redox Flow Batteries -- 1.2.1 Classification of Membranes Used in Aqueous Organic RFBs -- 1.2.1.1 Nafion-Based Membranes -- 1.2.1.2 Microporous Membranes -- 1.2.1.3 Anion-Exchange Membranes (AEMs) -- 1.2.1.4 Cation Exchange Membranes (CEMs) -- 1.3 Membranes Used in Non-Aqueous Redox Flow Batteries (NARFBs) -- 1.3.1 Stability of Membrane in Diverse Solvents -- 1.3.2 Ionic Permeability and Selectivity -- 1.3.3 Ionic Conductivity -- 1.3.4 Swelling -- 1.3.5 Mechanical and Chemical Stability -- 1.3.6 Cycling Performance -- 1.3.7 Classification of Membranes Used in NARFBs -- 1.3.7.1 Dense Membranes -- 1.3.7.2 Dense Ceramic Membranes -- 1.3.7.3 Porous Membranes -- 1.4 Ion-Exchange Membranes or Ion-Conducting Membranes for RFBs -- 1.4.1 Cation Ion Exchange Membrane (CEMs) -- 1.4.2 Anion Exchange Membrane (AEMs) -- 1.4.2.1 Preparation by Condensation Reaction of Ionic Monomeric Compounds -- 1.4.2.2 Preparation by Polymerization of Vinyl Monomers -- 1.4.2.3 Preparation from Conventional Polymers -- 1.4.2.4 Preparation by Plasma Polymerization -- 1.5 Polymer Electrolyte Membranes -- 1.5.1 Membrane Properties -- 1.5.1.1 Ion Exchange Capacity -- 1.5.1.2 Chemical Stability -- 1.5.1.3 Thermal Stability -- 1.5.1.4 Mechanical Property -- 1.5.1.5 Ionic Conductivity -- 1.5.1.6 Vanadium Ion Permeability -- 1.5.1.7 Water or Electrolyte Uptake -- 1.5.2 Transport Mechanisms -- 1.5.2.1 Proton Transport -- 1.5.2.2 Vanadium Ion Transport -- 1.5.2.3 Water (H2O) Transport -- 1.5.3 Membrane Preparation -- 1.5.3.1 Cation-Exchange Membrane (CEM) -- 1.5.4 Anion-Exchange Membrane -- 1.5.4.1 Polysulfone (PSF) -- 1.5.4.2 Poly(aryl-ether-ketone) (PAEK) -- 1.5.5 Amphoteric Membranes -- 1.5.6 Porous Membrane.
1.5.7 Polybenzimidazole (PBI) -- 1.5.8 Polyacrylonitrile (PAN) -- 1.6 Amphoteric Ion-Exchange Membranes -- 1.7 Protonated Polybenzimidazole (PBI) Membrane -- 1.8 Summary -- References -- Chapter 2 Electrolytes Materials for Redox Flow Batteries -- 2.1 Introduction -- 2.2 Overview of Redox Flow Battery -- 2.3 Measurement of the Capacity of the Redox Flow Battery -- 2.4 Formation of Redox-Active Constituents for RFB -- 2.4.1 Inorganic Redox Flow Battery -- 2.4.1.1 All Vanadium RFBs -- 2.4.1.2 Zinc/Bromine RFBs -- 2.4.1.3 Tin/Bromine Redox Flow Battery -- 2.4.1.4 Iron-Chromium RFB -- 2.4.1.5 Polysulfide-Bromine RFB -- 2.4.1.6 Titanium-Manganese Redox Flow Battery -- 2.4.2 Organic Redox Flow Battery -- 2.4.2.1 Quinone-Based Redox Active Materials -- 2.4.2.2 Tempo-Based Redox-Active Materials -- 2.4.2.3 Redox Active Materials Based on Alkoxybenzene -- 2.5 Hybrid Electrolytes Used in a Lithium Redox Flow Battery -- 2.6 Levelised Cost of the Redox Active Materials -- 2.7 Conclusion -- References -- Chapter 3 Zinc Hybrid Redox Flow Batteries -- 3.1 Introduction -- 3.2 Zn Electrode and Dendrite Formation -- 3.3 The Electrolyte -- 3.4 Effect of Temperature -- 3.5 The Membrane -- 3.6 Hydrogen Evolution Reaction -- 3.7 Conclusion -- References -- Chapter 4 Zinc-Bromine Hybrid Redox Flow Batteries -- 4.1 Introduction -- 4.2 Electro-Chemical Energy Storage -- 4.3 Redox Flow Batteries -- 4.4 Zinc/Bromine Flow Batteries -- 4.5 Types of Zinc-Based Hybrid Flow Batteries -- 4.5.1 Zinc-Sulphur (Zn-S) Hybrid Battery -- 4.5.2 Zinc-Nickel (Zn/Ni) Batteries -- 4.5.3 Zinc-Sodium Hybrid Ion Batteries (ZSHIBs) -- 4.5.4 Zn-Ion Batteries (ZIBs) -- 4.6 Electrochemistry of Zinc/Bromine Deposition -- 4.6.1 Electrochemical Performance -- 4.6.2 Reduction of Dendrite Deposition -- 4.6.3 Bio-Mass Electrocatalyst -- 4.6.4 Surface Chemistry -- 4.6.5 Effect of Zinc Utilization.
4.7 Applications of Zinc-Bromine Hybrid Flow Batteries -- 4.8 Future Challenges -- 4.8.1 Electric Vehicles -- 4.8.2 Energy Management -- 4.8.3 Size and Cost -- 4.8.4 Safety Measures -- 4.9 Conclusion -- References -- Chapter 5 Zinc-Cerium Hybrid Redox Flow Batteries -- 5.1 Introduction -- 5.1.1 Redox Flow Batteries (RFBs) -- 5.1.2 The Basic Concept of Redox Flow Batteries -- 5.1.3 Progress and Challenges in the Redox Flow Batteries -- 5.1.4 Types of Redox Flow Batteries -- 5.1.4.1 Aqueous Redox Flow Batteries -- 5.1.4.2 Nonaqueous Redox Flow Batteries -- 5.1.4.3 Hybrid Redox Flow Batteries -- 5.2 Zinc-Cerium Hybrid Redox Flow Battery -- 5.2.1 Working Principle of Zn-Ce Redox Flow Cell -- 5.2.1.1 Components of Zn-Ce Redox Flow Battery -- 5.2.2 Factors Affecting the Performance of Zn-Ce Redox Flow Battery -- 5.2.2.1 Temperature -- 5.2.2.2 Electrolyte Flow Rate -- 5.2.2.3 Current Density -- 5.2.2.4 Charge Conditions and Cycle Life -- 5.3 Summary -- Acknowledgment -- References -- Chapter 6 Vanadium Redox Flow Batteries (VRFB) -- 6.1 Introduction and Overview -- 6.1.1 Working Principle of VRFB -- 6.1.2 Main Components of the VRFB System -- 6.1.2.1 Electrodes -- 6.1.2.2 Electrolytes -- 6.1.2.3 Membranes -- 6.1.2.4 Bipolar Plates -- 6.2 VRFB System as Compared to Other Energy Storage Systems -- 6.3 Recent Research on VRFB -- 6.3.1 Positive and Negative Electrodes -- 6.3.2 Electrolytes -- 6.4 Conclusion and Perspective -- References -- Chapter 7 Vanadium-Based Redox Flow Batteries -- 7.1 Introduction -- 7.2 Redox Flow Batteries (RFBs) -- 7.2.1 The General Structure of RFBs -- 7.2.2 Working of Redox Flow Batteries -- 7.3 Types of Redox Flow Batteries -- 7.3.1 Iron/Chromium -- 7.3.2 All-Vanadium -- 7.3.3 Vanadium/Bromine -- 7.3.4 Bromine/Polysulfide -- 7.4 Vanadium Redox Flow Battery (VRFB) -- 7.4.1 Working Principle of Vanadium Redox Flow Battery.
7.4.2 Role of Different Components in VRFBs -- 7.4.2.1 Role of Membrane -- 7.4.2.2 Role of Electrolyte -- 7.4.2.3 Role of Electrode -- 7.5 Applications of Vanadium Redox Flow Batteries (VRFBs) -- 7.6 Summary -- References -- Chapter 8 System for the Redox Flow Technology -- 8.1 Introduction -- 8.2 General Construction of Redox Flow Battery -- 8.3 Energy Capacity -- 8.4 Optimization -- 8.5 Classification of RFB Based on Active Electrolyte -- 8.5.1 Inorganic Redox Flow Battery -- 8.5.1.1 Vanadium Redox Flow Battery -- 8.5.1.2 The Iron Redox Flow Battery (IRFB) -- 8.5.1.3 Polysulphide-Bromine Redox Flow Battery (PBBs) -- 8.5.1.4 Zinc-Polyiodide Redox Flow Battery -- 8.6 Organic Redox Flow Battery -- 8.7 Membrane-Less RFB -- 8.8 Semi-Solid RFB -- 8.9 Conclusion -- References -- Chapter 9 An Overview of Large-Scale Energy Storage Systems -- 9.1 Introduction -- 9.2 Progression of Energy Storage Method -- 9.3 Categorization of Energy Storage System -- 9.3.1 Mechanical Energy Storage -- 9.3.2 Thermal Energy Storage -- 9.3.3 Electrostatic and Magnetic Energy Storage System -- 9.3.4 The Electrochemical Energy Storage System -- 9.3.5 The Chemical Energy Storage System -- 9.4 Implementations of Energy Storage Systems -- 9.5 Commercial Prototype of Energy Storage Systems -- 9.6 Environmental Repercussions of Energy Storage Systems -- 9.7 Energy Storage Guidelines -- 9.8 Blockades and Effective Solutions -- 9.9 Future Prospects -- 9.10 Conclusion -- References -- Index -- EULA.
Record Nr. UNINA-9910853999403321
Inamuddin  
John Wiley & Sons, Inc, 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui