Quantum computing and communications [[electronic resource] ] : an engineering approach / / Sándor Imre and Ferenc Balázs |
Autore | Imre Sándor |
Edizione | [1st edition] |
Pubbl/distr/stampa | Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2005 |
Descrizione fisica | 1 online resource (315 p.) |
Disciplina |
004.1
621.3820285 |
Altri autori (Persone) | BalázsFerenc <1973-> |
Soggetto topico |
Digital communications - Data processing
Quantum computers Signal processing - Digital techniques Telecommunication - Data processing |
Soggetto genere / forma | Electronic books. |
ISBN |
1-118-72547-6
0-470-86904-6 1-280-27231-7 9786610272310 0-470-86903-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Quantum Computing and Communications An Engineering Approach; Contents; Preface; How to use this book; Acknowledgments; List of Figures; Acronyms; Part I Introduction to Quantum Computing; 1 Motivations; 1.1 Life Cycle of a Well-known Invention; 1.2 What about Computers and Computing?; 1.3 Let us Play Marbles; 2 Quantum Computing Basics; 2.1 Mystery of Probabilistic Gate; 2.2 The Postulates of Quantum Mechanics; 2.3 Qbits and Qregisters; 2.4 Elementary Quantum Gates; 2.5 General Description of the Interferometer; 2.6 Entanglement; 2.6.1 A surprising quantum state - entanglement
2.6.2 The CNOT gate as classical copy machine and quantum entangler2.6.3 Bell states; 2.6.4 Entanglement with the environment - decoherence; 2.6.5 The EPR paradox and the Bell inequality; 2.7 No Cloning Theorem; 2.8 How to Prepare an Arbitrary Superposition; 2.9 Further Reading; 3 Measurements; 3.1 General Measurements; 3.2 Projective Measurements; 3.2.1 Measurement operators and the 3(rd) Postulate in the case of projective measurement; 3.2.2 Measurement using the computational basis states; 3.2.3 Observable and projective measurement; 3.2.4 Repeated projective measurement 3.2.5 CHSH inequality with entangled particles3.3 Positive Operator Valued Measurement; 3.3.1 Measurement operators and the 3(rd) Postulate in the case of POVM; 3.3.2 How to apply POVM operators; 3.4 Relations among the Measurement Types; 3.5 Quantum Computing-based Solution of the Game with Marbles; 3.6 Further Reading; Part II Quantum Algorithms; 4 Two Simple Quantum Algorithms; 4.1 Superdense Coding; 4.2 Quantum Teleportation; 4.3 Further Reading; 5 Quantum Parallelism; 5.1 Introduction; 5.2 Deutsch-Jozsa Algorithm; 5.3 Simon Algorithm; 5.4 Further Reading 6 Quantum Fourier Transform and its Applications6.1 Quantum Fourier Transform; 6.2 Quantum Phase Estimation; 6.2.1 Idealistic phase estimation; 6.2.2 Phase estimation in practical cases; 6.2.3 Quantitative analysis of the phase estimator; 6.2.4 Estimating quantum uncertainty; 6.3 Order Finding and Factoring - Shor Algorithm; 6.3.1 Connection between factoring and order finding; 6.3.2 Quantum-based order finding; 6.3.3 Error analysis and a numerical example; 6.4 QFT as generalized Hadamard transform; 6.5 Generalizations of order finding; 6.5.1 Period finding 6.5.2 Two-dimensional period finding and discrete logarithm6.6 Further Reading; Part III Quantum-assisted Solutions of Infocom Problems; 7 Searching in an Unsorted Database; 7.1 The Basic Grover Algorithm; 7.1.1 Initialization - quantum parallelism; 7.1.2 First stage of G - the Oracle; 7.1.3 Second stage of G - inversion about the average; 7.1.4 Required number of iterations; 7.1.5 Error analysis; 7.2 Quantum Counting; 7.2.1 Quantum counting based on phase estimation; 7.2.2 Error analysis; 7.2.3 Replacing quantum counting with indirect estimation on M; 7.3 Quantum Existence Testing 7.3.1 Error analysis |
Record Nr. | UNINA-9910143553803321 |
Imre Sándor | ||
Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Quantum computing and communications [[electronic resource] ] : an engineering approach / / Sándor Imre and Ferenc Balázs |
Autore | Imre Sándor |
Edizione | [1st edition] |
Pubbl/distr/stampa | Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2005 |
Descrizione fisica | 1 online resource (315 p.) |
Disciplina |
004.1
621.3820285 |
Altri autori (Persone) | BalázsFerenc <1973-> |
Soggetto topico |
Digital communications - Data processing
Quantum computers Signal processing - Digital techniques Telecommunication - Data processing |
ISBN |
1-118-72547-6
0-470-86904-6 1-280-27231-7 9786610272310 0-470-86903-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Quantum Computing and Communications An Engineering Approach; Contents; Preface; How to use this book; Acknowledgments; List of Figures; Acronyms; Part I Introduction to Quantum Computing; 1 Motivations; 1.1 Life Cycle of a Well-known Invention; 1.2 What about Computers and Computing?; 1.3 Let us Play Marbles; 2 Quantum Computing Basics; 2.1 Mystery of Probabilistic Gate; 2.2 The Postulates of Quantum Mechanics; 2.3 Qbits and Qregisters; 2.4 Elementary Quantum Gates; 2.5 General Description of the Interferometer; 2.6 Entanglement; 2.6.1 A surprising quantum state - entanglement
2.6.2 The CNOT gate as classical copy machine and quantum entangler2.6.3 Bell states; 2.6.4 Entanglement with the environment - decoherence; 2.6.5 The EPR paradox and the Bell inequality; 2.7 No Cloning Theorem; 2.8 How to Prepare an Arbitrary Superposition; 2.9 Further Reading; 3 Measurements; 3.1 General Measurements; 3.2 Projective Measurements; 3.2.1 Measurement operators and the 3(rd) Postulate in the case of projective measurement; 3.2.2 Measurement using the computational basis states; 3.2.3 Observable and projective measurement; 3.2.4 Repeated projective measurement 3.2.5 CHSH inequality with entangled particles3.3 Positive Operator Valued Measurement; 3.3.1 Measurement operators and the 3(rd) Postulate in the case of POVM; 3.3.2 How to apply POVM operators; 3.4 Relations among the Measurement Types; 3.5 Quantum Computing-based Solution of the Game with Marbles; 3.6 Further Reading; Part II Quantum Algorithms; 4 Two Simple Quantum Algorithms; 4.1 Superdense Coding; 4.2 Quantum Teleportation; 4.3 Further Reading; 5 Quantum Parallelism; 5.1 Introduction; 5.2 Deutsch-Jozsa Algorithm; 5.3 Simon Algorithm; 5.4 Further Reading 6 Quantum Fourier Transform and its Applications6.1 Quantum Fourier Transform; 6.2 Quantum Phase Estimation; 6.2.1 Idealistic phase estimation; 6.2.2 Phase estimation in practical cases; 6.2.3 Quantitative analysis of the phase estimator; 6.2.4 Estimating quantum uncertainty; 6.3 Order Finding and Factoring - Shor Algorithm; 6.3.1 Connection between factoring and order finding; 6.3.2 Quantum-based order finding; 6.3.3 Error analysis and a numerical example; 6.4 QFT as generalized Hadamard transform; 6.5 Generalizations of order finding; 6.5.1 Period finding 6.5.2 Two-dimensional period finding and discrete logarithm6.6 Further Reading; Part III Quantum-assisted Solutions of Infocom Problems; 7 Searching in an Unsorted Database; 7.1 The Basic Grover Algorithm; 7.1.1 Initialization - quantum parallelism; 7.1.2 First stage of G - the Oracle; 7.1.3 Second stage of G - inversion about the average; 7.1.4 Required number of iterations; 7.1.5 Error analysis; 7.2 Quantum Counting; 7.2.1 Quantum counting based on phase estimation; 7.2.2 Error analysis; 7.2.3 Replacing quantum counting with indirect estimation on M; 7.3 Quantum Existence Testing 7.3.1 Error analysis |
Record Nr. | UNINA-9910830304203321 |
Imre Sándor | ||
Chichester, West Sussex, England ; ; Hoboken, NJ, : Wiley, c2005 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|